موضوع: "بدون موضوع"

پایان نامه ارشد: فلسفه و روشهای مقاوم سازی ساختمانهای بنایی موجود در برابر زلزله
جمعه 99/10/26
از آنجا که کشور ایران به عنوان یکی از مناطق زلزله خیز جهان در مسیر کمر بند زلزله آلپ هیمالیا قرار دارد و وجود گسل های فراوان و رخداد زلزله های شدید در گذشته های دور و دهه های اخیر در راستای گسل های شناخته شده و همچنین نقشه پهنه بندی موجود خطر زلزله نشانگر این واقعیت است که اکثر مناطق کشور در معرض وقوع زلزله های شدید یا نسبتاً شدید قرار دارند. از طرفی با توجه به وضعیت آسیب پذیری بسیار نگران کننده شهرها و روستاهای کشور که حاصل قرن ها غفلت در تاریخ ایران بوده است، تا قبل از زلزله منجیل ـ رودبار (در سال 1369) اقدامات و فعالیتهای موثر علمی ـ فنی در زمینه کاهش خطرات ناشی از زلزله بسیار اندک بوده و آن هم به صورت پراکنده انجام پذیرفته است. پس از این زلزله و بدنبال انجام کارهای گوناگون در زمینه مهندسی زلزله موقعیت کشور از این نظر بهبود یافت بطوری که تهیه و تدوین مقررات، بازبینی آیین نامه های زلزله، تهیه و تدوین دستورالعمل های ایمن سازی و بهسازی لرزه ای ساختمان ها بخشی از دست آوردهای حاصل از خود آگاهی جامعه فنی و مدیران کشور پس از زلزله مهم سال 1369 در رودبار و منجیل می باشد.
در کنار این پیشرفت ها، کمبودهای شدید و نگران کنندهای وجود دارد. که حاصل ساخت و سازهای غیر فنی و ناامن بوده، بطوری که شهرها و روستاهای کشور با ساختمان های نامقاوم در برابر زلزله، پرهزینه، کم دوام، پرمصرف از نظر انرژی وگران قیمت از نظر نگهداری شکل گرفته است.
در حال حاضر ساختمان های ساخته شده با مصالح بنایی( بخصوص ساختمان های آجری)، درصد بالایی از ساختمان های موجود یا در حال احداث در کشور ما را تشکیل می دهند مهمترین عامل مقبولیت ساختمان های بنایی در ایران، بویژه در شهرستان ها در دسترس بودن مصالح، ساده بودن تکنولوژی تولید آجر و بلوک های بنایی ، آشنایی سازندگان با نحوه ساخت و ساز با مصالح بنایی و سرانجام ارزان تر بودن قیمت تمام شده این قبیل ساختمان ها نسبت به ساختمان های با اسکلت فولادی و بتن مسلح می باشد. باتوجه به اینکه در ساخت بیشتر ساختمان های بنایی ضوابط و معیارهای مهندسی مربوط به مقاومت سازه در برابر زلزله مورد توجه قرار نمی گیرد. و معمولاً توسط
سازندگان محلی و بدون توجه به اثر تخریبی زلزله، طراحی و اجرا می شوند. رویداد هر زمین لرزه در هر نقطه از کشور فاجعه آمیز بوده و پیامدهای بسیار نگران کننده ای در برخواهد داشت. برای داشتن ساختمان هایی مقاوم در برابر زلزله با سطح ایمنی مطلوب دو مسأله اساسی را باید بطور منطقی پاسخ داد.
1) ساختمان هایی که از این به بعد ساخته می شوند چگونه طراحی، محاسبه و اجرا شوند تا دارای مقاومت کافی در برابر زلزله باشند.
2) ساختمان های متعدد موجود که در برابر زلزله آسیب پذیرند چگونه بررسی و مقاوم سازی شوند.
در این پروژه سعی شده است پاسخی بر پایه تجربیات و پژوهشهای انجام گرفته در کشور ارائه شود و روشهای اجرایی و مراجع آیین نامهای جمع آوری شود ودر پایان روشی مطمئن برای مقاوم سازی ساختمان های بنایی ارائه گردد.
مرور کارهای گذشته
نصب دستگاههای لرزه نگار در نقاط مختلف جهان از اواخر قرن نوزدهم آغاز شد و طی مدت کوتاهی به سرعت بر تعداد آنها افزوده شد. به کمک آنها مجموعه اطلاعات بسیار ارزشمندی به دست می آید. از میان همه این اطلاعات شاید یک مطلب بیش از همه شایان توجه باشد و آن اینکه زلزله ها به هر سبب که ایجاد شده باشندـ تکرار پذیرند و تنها راه مقابله با زلزله، طراحی و اجرای ساختمان ها به گونهای است که تاب ایستادگی در مقابل زلزله های مخرب را داشته باشد.
زلزله های مرگبار زیادی در تاریخ ایران اتفاق افتاده است اما مهمترین آنها که به عنوان نقطه عطفی در رویکرد جامعه مهندسی به شمار می رود، زلزله سال 1369 رودبار و منجیل می باشد که تلفات بسیار زیادی را به همراه داشته است ، بررسی عملکرد سازه های مختلف در این زلزله گواه آن است که اگر ساختمان های آجری را در یک کفه دیگر بگذاریم، آمار تلفات جانی و تخریب کامل بنا، تماماً به گروه اول اختصاص داشته و گروه دوم به طور نسبی آمار بسیار پایینی دارند.[1] همین امر جامعه مهندسی را بر آن داشت که در کنار تدوین آیین نامه برای ساختمان های مهندسی، به بررسی رفتار ساختمان های بنایی نیز پرداخته ودر صدد تدوین دستورالعمل جامع برای طرح و اجرای این نوع سازه ها برآیند. ماحصل این تلاش ها تدوین فصل سوم آیین نامه 2800 به عنوان تنها مرجع معتبر داخلی در زمینه طرح و اجرای این نوع ساختمان ها می باشد.
به دلیل برجای ماندن تعداد زیادی از ساختمان های بنایی که در آن ها اصول آیین نامه 2800 رعایت نشده است و رفتار نامطلوب این ساختمان ها در زلزله های گذشته ، ضرورت امر مقاوم سازی آنها، محققان را بر آن داشته تا در صدد تدوین آیین نامه هایی برای بهسازی این ساختمان ها برآیند. در ادامه برخی از این آیین نامه ها را که در متن پایان نامه به تفضیل در مورد آنها بحث شده را مرور می نماییم.
آیین نامه FEMA-154 ایالات متحده آمریکا[2] یک روش ارزیابی سریع چشمی را ارائه می دهد این روش برای ساختمان های موجودی می باشد که هنوز در معرض زلزله قرار نگرفته اند و روشهای موجود در این آیین نامه ماحصل تجارب و بررسی خرابی زلزله های گذشته در سطح ایالت متحده می باشد. نتیجه این بررسی ها میزان آسیب پذیری ساختمان را در یک زلزله احتمالی نشان می دهد.
دستور العمل (Applied Technology Council)ATC-20 [3] برای کمک به تعیین میزان امنیت در ساختمان هایی می باشد که در معرض زلزله قرار گرفته اند. نیروهای متخصص، کار خود را با نیروهای امدادی آغاز می کنند.و وضعیت ایمنی هر ساختمان را با نصب علایم، مشخص می نمایند. بطور خلاصه آیین نامه ATC-20 را می توان راهنمایی ارزیابی سریع سطح ایمنی ساختمان های آسیب دیده از زلزله دانست
مجموعه FEMA (306-307-308) [4]،[5]،[6]، را می توان راهنمای ترمیم ساختمان های آسیب دیده از زلزله دانست. این آیین نامه ها را سازمان مدیریت بحران فدرال (FEMA) در پروژه ای به نام پروژه ATC-43 با هدف ارزیابی و تعمیر خرابی های ساختمان های بتنی و با مصالح بنایی در سال 1996 شروع کرد. نتایج این پروژه در قالب 3 گزارش ارائه شده است. که این گزارش ها مجموعه FEMA 306-307-308 را تشکیل می دهند.FEMA 306[4] و FEMA 307[5] برای ارزیابی ساختمان ها و FEMA 308[6] به عنوان راهنمای بهسازی می باشد. برخی روشهای ترمیمی این آیین نامه در پایان نامه آورده شده است.
دستورالعمل بهسازی لرزهای ساختمان های موجود که اولین ویرایش آن را دفتر تدوین معیارهای سازمان مدیریت و برنامه ریزی در خرداد ماه 1381 کشور با همکاری پژوهشگاه بینالمللی زلزله شناسی و مهندسی زلزله منتشر کرد. این دستورالعمل در حقیقت اوین و تنها آیین نامه ملی موجود در زمینه ارزیابی آسیب پذیری وبهسازی لرزهای ساختمان ها می باشد. البته بخش های عمده این آییننامه ترجه پیشنویس آییننامه FEMA 356 تحتعنوان “Pre standard and Commentary for the Seismic Rehabilitation of Buildings” می باشد که با توجه به شرایط و آیین نامه های داخلی تا حد امکان بومی شده است.بدیهی است که در صورت انجام ارزیابی آسیب پذیری تفصیلی و ارائه طرح بهسازی برای یک ساختمان، استفاده از این دستورالعمل به عنوان تنها دستور العمل داخلی توصیه می شود. بخش مربوط به ساختمان های بنایی در این دستورالعمل بر خلاف سایر بخش ها ( که به صورت طراحی بر اساس عملکرد می باشند) به بررسی نواقص ساختمان های بنایی اکتفا کرده است و روش ساده بهسازی را پیشنهاد نموده است.
دستور العمل تحلیل آسیب پذیری و بهسازی لرزهای ساختمان های بنایی غیر مسلح موجود (وزارت مسکن و شهرسازی)[2] که با هدف بالا بردن توان و حفظ ایستائی و کاهش تلفات جانی ناشی از اثرات مخرب زلزله بر ساختمان بنایی غیر مسلح موجود از طریق بهبود عملکرد تدوین شده است. این دستورالعمل دارای روش هایی برای ارزیابی و راهکارهایی برای بهسازی لرزهای با جزییات اجرایی می باشد.
در کنار آیین نامه هایی که در بالا مطرح شد، تحقیقات دیگری نیز صورت گرفته است که به صورت مقالات و گزارش هایی از زلزله های گذشته منتشر شده است، می باشند. این مقالات همگی سعی بر آن دارند که روشهایی برای ارزیابی و تحلیل این نوع ساختمان ها ارائه دهند. از روشهای مهم ارزیابی ساختمان های بنایی میتوان به روش هایی از قبیل روش ارزیابی دستور العمل بهسازی لرزهای ساختمانهای موجود[7]، روش ارزیابی فصل هفتم دستور العمل FEMA 273 ، FEMA 356 [8]، [9]، و روش ارزیابی لانگ ـ باخمن [10] اشاره کرد.
روند انجام پایان نامه
با توجه به اینکه طیف گسترده ای از ساختمان های موجود در کشور از نوع ساختمان های بنایی می باشند و از طرف دیگر کشور ایران از لرزه خیزی بالایی برخوردار است، همین مساله باعث شده است که معایب ساختمان های بنایی به محاسن آن چیرگی یافته است ، تجربه زلزلهای مختلف بیش ترین آمار تلفات را در میان این نوع ساختمانها نشان می دهد.
در فصل اول این پایان نامه ابتدا آماری از وضعیت ساختمان های کشور ارائه شده است که در آن درصد ساختمان های بنایی و اسکلت بتنی در برهه ای از زمان ارائه شده است. این آمار حجم بالای این نوع ساختمانها را در کشور نشان می دهد، در ادامه گزارش هایی از برخی از زلزله های گذشته مانند زلزله مهم رودبار و منجیل، بم ، چنگوره ـ آوج و داهوییه و نواقص و آسیب های وارده به ساختمان های آنها بررسی شده است. پس از آن وضعیت لرزه خیزی ایران بررسی شده است، این بررسی نشان دهنده خطر لرزه خیزی بالای اکثر مناطق کشور می باشد. فصل اول با مطلبی در مورد ضرورت مقاوم سازی ساختمان های بنایی به پایان رسیده است.
در فصل دوم به بررسی چرایی و فلسفه بهسازی و تقویت ساختمانهای بنایی پرداختیم و با ارائه آمارهای منتشر شده اثبات می نماییم که از نظر اقتصادی تخریب بنای قدیمی و ساخت بنای جدید بسیار پر هزینه است و عملا در جوامع غیر شهری که سهم عمده در داشتن ساختمانهای بنایی دارند، ممکن نیست.
در فصل سوم خواص لرزهای ساختمان های بنایی، عناصر لرزه بر در این ساختمانها، انواع حالت های شکست این عناصر ارائه شده است. در ادامه هم روشهای ارزیابی کمی ساختمانهای بنایی آمده است و در نگاهی متفاوت نسبت به ساختمانهای بنایی دلایل اصلی ناپایداری این ساختمانها و اثر مخرب زلزله بر آن ها آمده است، تئوریها و نتایج تحقیقات قاب های مرکب که در فصل آخر به عنوان روشی مناسب برای مقاوم سازی ساختمان های بنایی استفاده شده است را در فصل دوم می توانیم ببینیم.
در فصل چهارم به بررسی آیین نامه ها و ضوابط فنی پرداخته شده است. این فصل شامل خلاصهای از دستورالعمل های خارجی و داخلی بصورت کلی و بررسی مفصل بخش هایی از آنها که به مبحث این تحقیق مربوط است می باشد. این فصل مجموعهای نسبتاً کامل از دستورالعمل های مقاوم سازی می باشد که در مورد ساختمان های با مصالح بنایی بسیار مفصل و کامل به دسته بندی مطالب ارائه شده در آنها پرداخته و مجموعهای از مهمترین مطالب آنها گرد آوری شده است.
در فصل پنجم به ارائه روشهای تعمیر، بازسازی و تقویت ساختمانهای بنایی پرداختیم و با جمع آوری روشهای سنتی و مدرن سعی برآن بوده است که بهترین روشها مطرح شوند.
فصل ششم به روشهای مربوط به مقاوم سازی ساختمانهای روستایی اختصاص دارد و به صورت جز به جز به ارائه روشهای مبتی بر آیین نامه برای هر قسمت از ساختمانهای خشتی و گلی می پردازد.
در ادامه با نتیجه گیری و ارائه پیشنهاد برای تحقیقات آتی و ذکر منابع و مراجع کار به اتمام رسیده است.

پایان نامه کارشناسی ارشد:برآورد نیروهای طراحی سگمنتهای بتنی تونلها تحت بارهای لرزهای و ثقلی باتوجه به رفتار غیرخطی و اندركنش آنها با محیط اطراف
جمعه 99/10/26
كشور ایران به عنوان یكی از مناطق زلزله خیز جهان همواره در طی سالیان گذشته در معرض زلزله های ویران كننده ای قرار داشته است. شرایط طبیعی و زمین شناسی ایران از نقطه نظر وقوع زلزله به طورجدی در دستوركار مهندسین و برنامه ریزان قرار گرفته است. با توجه به اینكه تونل های بسیاری در مناطق زلزله خیز احداث شده و یا در دست ساخت قرار دارند، طراحی ایمن آنها در برابر زلزله از اهمیت و جایگاه ویژه ای برخورداراست. بررسی دقیق پایداری لرزه ای تونلها از مسائل پیچیده در حوزه سازه ها است. تنوع خواص دینامیكی بدنه تونل و گوناگونی جنس و ضخامت خاک كه می توانند در انتقال، تضعیف و تقویت امواج زلزله نقش اساسی داشته باشند، وجود یا عدم وجود گسل فعال در محدوده محور تونل، ویژگی های زلزله مانند فاصله مركز زلزله تا تونل، شدت و طول زمان وقوع زلزله، نوع و امتداد
امواج رسیده به تونل و محتوی فركانسی امواج، همه از عواملی هستند كه درپاسخ دینامیكی تونل نقش به سزایی دارند.
به طور كلی تونلها، سازه هایی سه بعدی، عظیم، نا همگن، غیرایزوتروپ و غیر ارتجاعی هستند كه در اندر كنش با شالوده و آب مخزن می باشند. مدلهای عددی كه بتوانند تمام عوامل فوق را در نظر بگیرند از پیچیدگی زیادی برخوردار خواهند بود. بسته به اینكه كدام یك از شرایط فوق به طور مشخص حاكم بر مسئله باشد مدل می تواند آن پارامتر را ملحوظ نموده و به منظور یافتن رفتار واقعی تر تونل آنها را در نظر بگیرد. در سالهای اخیر پیشرفتهای صورت گرفته در هر دو زمینه نرم افزار و سخت افزار كامپیوتر بسیاری از این مشكلات را خصوصا در زمینه مدل كردن هندسه سه بعدی بدنه تونلها و رفتار غیر خطی و غیر ارتجاعی خاك قابل حل نموده است. به همین نسبت پیشرفتهای صورت گرفته در زمینه روشهای آزمایشگاهی و صحرایی در ارزیابی خواص دینامیكی مصالح تونل و نتایج حاصل از آزمایش های ارتعاش اجباری تونلها و ثبت پاسخ تونلها در برابر زلزله های واقعی در جهت تصحیح و اعتبار بخشیدن به روشهای عددی و تحلیلی بسیار موثر بوده است.
1-2 بیان مسئله
با توجه به دامنه كاربرد تونلها در كشور لرزه خیز ایران، تحلیل دینامیكی این گونه تونلها از اهمیت ویژه ای برخوردار است. روشهای مختلفی تاكنون برای پیش بینی رفتار انواع مختلف تونلها توصیه و بكار رفته است. روش شبه استاتیكی كه بر مبنای تحلیلهای تعادل حدی قرار گرفته است، هر چند با كاربرد آسان و فرضیات ساده ایمنی تونل را ارائه می دهد، اما در كنار این مزایا روش شبه استاتیكی، بعضاً می تواند به نتایج بسیار بدبینانه نسبت به پایداری لرزه ای سازه منجر شود كه خود به ارائه طرحی غیراقتصادی ختم می گردد.
امروزه با پیشرفت روزافزون و فراگیرشدن كامپیوتر، استفاده از روشهای عددی در تحلیل و طراحی تونلها در مقابل زلزله بمراتب از گذشته بیشتر شده است. انتخاب مدل رفتاری مناسب مهمترین فاكتور در آنالیز با روشهای اجزای محدود یا تفاضل محدود تونلها، برای مدل كردن رفتار تنش كرنش پوشش می باشد. به دلیل اینكه رفتار خاك الاستیك خطی نیست، استفاده از چنین مدلهایی می تواند به نتایج غیرایمن و غیر اقتصادی منجر شود. همچنین در حین ساخت تونل و بعد از آن مسیرهای مختلفی از تنش همراه با دوران جهت تنشهای اصلی در خاكریز رخ می دهند كه در نتیجه مدلهای الاستیك غیرخطی نیز قادر به در نظر گرفتن وابستگی رفتار به مسیر تنش كه در اثر رفتار غیرارتجاعی خاك حادث می شود، نمی باشند. در همین راستا سعی می شود در این تحقیق پاسخ دینامیكی تونلها با استفاده از مدلهای الاستوپلاستیك تحلیل شود. نرم افزار اصلی مورد استفاده PLAXIS V8.5 می باشد كه در حال حاضر بصورت گسترده ای در مسائل مكانیك خاك مورد استفاده قرار می گیرد.
1-3 هدف از تحقیق
تونلها از جمله سازه های ژئوتكنیكی هستند كه گسیختگی در آنها می تواند منجر به خسارات جبران ناپذیری گردد، از اینرو در طراحی آنها لازم است تمام كنترلها و حساسیتهای لازم بعمل آید. یكی از این موارد، كنترل پایداری تونل در طول زلزله و بعد از آن میباشد. بررسی دقیق پایداری تونلها در برابر زلزله از پیچیده ترین مسایل در حوزه سازه ها است. علت این مسئله این است كه مجموعه معلومات و روابط بین آنها در تحلیل این مسئله بسیار متنوع و متفاوت است. با توجه به وسعت كاربرد تونلها و همچنین لرزه خیزی كشور ایران، برآورد ایمنی لرزه ای تونلها نقش ارزنده ای دارد.
1-4- متدلوژی تحقیق
در این تحقیق پاسخ غیر خطی پوشش تونل های حفاری شده با دستگاه TBM در برابر زلزله با استفاده از مدل موهر-کلمب كه یك مدل الاستوپلاستیك می باشد، بدست می آید. با استفاده از این روش پاسخ دو بعدی تونل در حالت کرنشهای صفحهای در برابر زلزله محاسبه می شود. برای انجام تحلیل ها از روش اجزاء محدود (F.E.M) و با استفاده از نرم افزار PLAXIS 8.5 Professional استفاده خواهد شد. در این نرم افزار معادلات دینامیكی حركت با انتگرال گیری به روش نیومارك حل می شود. برای انجام مطالعات موردی از اطلاعات موجود در راهنمای نرمافزار برای هندسه تونل و نوع و مشخصات مصالح آن استفاده می شود.

پایان نامه ارشد: ارزیابی عملکرد لرزه ای قاب های خمشی فولادی از نظر شکل پذیری
جمعه 99/10/26
سالیان متمادی هدف آیین نامهها و دستورالعملهای لرزه ای، معرفی سیستمهای سازه ای با قابلیت مقاومت در برابر زلزله بدون ویرانی و یا آسیبهای سازهای عمده بود. برای رسیدن به این هدف یکی از اصول اساسی دست یافتن به مصالح و سیستم سازه ای شکلپذیر میباشد. منظور از شکل پذیر بودن سازه، قابلیت تحمل تغییر شکلهای غیرخطی بزرگ، بدون هرگونه کاهش در مقاومت و یا ناپایداری و ویرانی میباشد؛ لذا انتظار میرود سیستمهای سازهای با شکلپذیری بالا قابلیت مقاومت در برابر تقاضایی بسیار بزرگتر از حد الاستیک خود را داشته باشند.
از اوایل سال 1960، به لحاظ تصوری که از رفتار مناسب و شکل پذیر سیستم قاب خمشی در برابر بارهای جانبی میشد، با اقبال عمومی خیره کننده ای روبرو گردید و در اغلب سازه های فولادی بکار برده میشد و بسیاری از مهندسان بر این باور بودند که آسیب سازهای عمده ای در هنگام زلزله متوجه قابهای خمشی فولادی نخواهد بود و در صورت بروز آسیب، این موضوع به خرابی در سطح اعضاء و اتصالات محدود خواهد ماند.
ضعف عمده قابهای خمشی فولادی در زلزله های سال 1994 نورثریچ[1] و 1995 کوبه[2] این تصور را به چالش کشید. بعد از زلزله مشاهده شد که تعدادی از ساختمانهای قاب خمشی فولادی متحمل شکست ترد در اتصالات به ویژه در ناحیه جوش شده بال پایین تیر به ستون شدهاند. دامنه خرابیها بسیار فراگیر بود تا آنجا که ساختمانهای 1 تا 26 طبقه، ساختمانهای با عمر ساخت کوتاه و حتی در حال ساخت را شامل میشد. نکته قابل توجه این بود که اکثر ساختمانهای آسیب دیده بر طبق ضوابط آیین نامههای معتبر قبل از این زلزله ها طراحی شده بودند و علاوه بر آن در مناطقی با سطح خطر زلزله متوسط قرار داشتند.
پیدایش این قبیل خرابیهای وسیع و شکستهای ترد غیر منتظره در اتصالات، منجر به تحقیقات و بررسیهای بسیاری به منظور بهبود عملکرد لرزهای قابهای خمشی فولادی گردید که از نتایج آنها میتوان به معرفی اتصالات جدیدتر و مقاومتر در برابر بارهای لرزهای اشاره
کرد.
اما معرفی اتصالات جدید، تنها رویکرد در پیش گرفته برای جلوگیری از تکرار چنین حوادث تلخی نبود چرا که آسیبهای سازهای مشاهده شده بعد از زلزله های نورثریچ و کوبه، ضعف روشهای طراحی و ارزیابی قابهای خمشی فولادی را هم آشکار نمود و بر ضرورت ارائه روشهای جدید در طراحی و ارزیابی ساختمانها با توجه به عملکرد مورد انتظار تاکید نمود. در این راستا فلسفه و مبنای آیین نامه ها مورد بازنگری و دگرگونی کلی قرار گرفت و منجر به پیدایش نسل جدیدی از دستورالعملهای طراحی بر اساس عملکرد گردید که در آنها از روش طراحی بر اساس عملکرد[3] استفاده شده است، که هدف اصلی آنها – و اغلب تنها هدفشان- این است که مانع فروریزش کلی سازه شوند، اصلاحات قابل توجهی داشتهاند، اما کاستیهایی نیز دارند: این دستورالعملها بر مبنای سطوح خطر و عملکردی مجزا میباشند و وضعیت کمّی عملکرد را برای خطر لرزهای پیوسته مشخص نمیکنند. علاوه بر آن تایید کفایت عملکرد در سطح اجزا صورت میگیرد نه در سطح کل سیستم و در نتیجه یک تراز عملکردی خاص در صورتی که معیار پذیرش تنها در یک جزء واحد رد شود، ارضا نخواهد شد و در نهایت اینکه ارزیابی عملکرد در این دستورالعملها، تعیینی است (به استثنای تعیین طیف خطر یکنواخت) و امکان بررسی صریح عوامل عدم قطعیت (ذاتی و دانش) که باید در ارزیابی عملکرد بر مبنای قابلیت اطمینان بررسی شوند، وجود ندارد.
برای رفع کاستیهای فوقالذکر، در روشهای طراحی بر اساس عملکرد، تحقیقات با هدف توسعه مهندسی زلزله بر اساس عملکرد (PBEE)[4] در حال انجام است تا روشی جامع جهت جایگزینی نسل اول روشهای مهندسی زلزله که در بالا به آنها اشاره شد، پیشنهاد شود. چشم انداز این روش توسط مؤسسه [5]PEER در قالب چارچوب زیر ترسیم شده است[8]:
*(کلیه پارامتر های معادله فوق در فصل 4 بخش 4 به طور کامل شرح داده خواهد شد)
اهداف نهایی در این چهار چوب تخمین احتمالاتی خسارت، هزینه ها و مدت زمان توقف کاربری میباشند. معادله بالا یک ساختار کلی برای هماهنگ سازی و ترکیب تحقیقات متنوع تحلیل خطر لرزه ای، مهندسی زلزله و تحلیل ریسک است و بدین وسیله، مسئله ابتدا به چهار جزء پایه ای تحلیل خطر، پیش بینی تقاضا، مدل سازی حالتهای آسیب و گسیختگی و تخمین خسارت از طریق معرفی سه متغیر میانی، [6]IM ،[7]EDP و [8]DM تفکیک میشود و سپس این اجزا مجدداً از طریق انتگرال گیری روی تمام سطوح متغیرهای میانی به هم مرتبط میشوند.
هدف این پایان نامه و یا تحقیقات مشابه یعنی ارزیابی عملکرد با استفاده از تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM، جزیی از چشم انداز جامع و کلی پیشنهادی برای ارزیابی اهداف عملکردی توسط PEER است که میتواند در چارچوب زیر تعریف شود:
*(کلیه پارامتر های معادله فوق در فصل 4 بخش 4 به طور کامل شرح داده خواهد شد)
آگاهی از میزان تقاضای لرزهای در یک سیستم سازه ای یکی از اجزای مهم ارزیابی عملکرد لرزهای است که به شدت تحت تأثیر عدم قطعیتها در حرکات زمین و پاسخ سازه است و تنها راه در نظر گرفتن این عدم قطعیتها مدل کردن دقیق آنها با توجه به تئوریهای آمار و احتمالات است. در تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM، برای سادگی در برخورد با مسئله عدم قطعیتها، با استفاده از یک پارامتر واسطه IM، هر یک از عدم قطعیتهای موجود در حرکت زمین و پاسخ سازه به صورت جداگانه مدل میشود و یا به عبارت دیگر، با توجه به کفایت پارامتر واسطه فرض میشود که این عدم قطعیتها از هم مستقل باشند. بدین ترتیب مسئله به دو ریز مسئله مجزای تحلیل خطر لرزهای و تعیین توزیع تقاضای لرزهای به وسیله تحلیل غیر خطی سازه تبدیل میشود و سپس نتایج نهایی با هم ترکیب میشود .
برای محاسبه توزیع تقاضا و ظرفیت لرزه ای، یکی از جدیدترین روشها، روش تحلیل دینامیکی غیر خطی افزایشی (IDA)[9] میباشد که توانایی پوشش تقاضای لرزهای سازه ای از حالت الاستیک تا ناپایداری کلی را دارا است. در این روش از مفهوم دیرینه مقیاس کردن رکورد ها اما به صورت هدفمند استفاده شده و مدل سازه را تحت یک یا چند رکورد در سطوح متفاوت شدت حرکات زمین قرار میدهند.
از آنجا که یکی از اهداف ارزیابی بر اساس عملکرد، درک صحیح از رفتار غیرخطی سازه در سطوح عملکرد نزدیک به فروپاشی سازه میباشد، در این راستا ایجاد مدلهای هیسترزیس که بتواند تمام پدیده های تأثیر گذار روی تعیین تقاضای لرزهای تا فروپاشی سازه را در برگیرد، یکی از چالشهای ارزیابی بر اساس عملکرد به حساب میآید و مدلهایی که زوال سختی و مقاومت در بار سیکلی را لحاظ میکنند در مدل سازی رفتار غیرخطی سازه از اهمیت فوقالعاده ای برخوردار میباشند که از جدیدترین این مدلها میتوان به مدل اصلاح شدهی ایبارا- کراوینکلر (2008) [20] اشاره کرد.
نتایج تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM میتواند به دو صورت بیان شود که یکی از آنها منحنیهای آسیب پذیری احتمال وقوع ظرفیت یا حالت حدی بوده و دیگری برآورد احتمال میانگین فراگذشت سالیانه حالت حدی میباشد که در میان انواع مختلف حالت حدی، فروپاشی کلی سازه از اهمیت بیشتری برخوردار میباشد و در تحقیقات بیشتری مورد بررسی قرار گرفته است. علاوه بر این نتایج، روش جامعی تحت عنوان رویکرد FEMA350 [5] در زمینه تحلیل احتمالاتی تقاضای لرزهای برای محاسبه سطوح اطمینان از عملکرد سازه های قاب خمشی فولادی ارائه شده که چارچوب مناسبی جهت برخورد با سه دسته عدم قطعیت کلیدی، یعنی عدم قطعیات موجود در حرکت زمین، پاسخ سازه و ظرفیت سازه را فراهم میکند و اثرات این عدم قطعیات را بر دو پارامتر بنیادی تقاضا و ظرفیت بیان میکند.
1-2- بیان مسئله و اهداف تحقیق:
همانطور که اشاره شد هدف ما ارزیابی عملکرد قابهای خمشی فولادی ویژه با استفاده از تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM، با تمرکز بر مدل کردن عدم قطعیتهای پاسخ سازه میباشد و مدل کردن عدم قطعیتهای موجود در حرکت زمین و تحلیل خطر لرزهای جزء اهداف این پایان نامه نمیباشند.
در این راستا قابهای خمشی ویژه فولادی سه، نه و بیست طبقه مطابق نشریه FEMA 355C [6] در نظر گرفته شده، سپس رفتار غیر خطی اعضای فولادی با استفاده از مدل جدید اصلاح شدهی ایبارا- کراوینکلر (2008) [20] در نرم افزار Opensees مدل سازی شده است و با انتخاب شتاب نگاشتهای مناسب حوزه نزدیک، تحلیل دینامیکی غیر خطی افزایشی روی سازه های مورد مطالعه انجام شده است و منحنیهای IDAبر حسب دو پارامتر تقاضای بیشینه نسبت تغییر مکان بام (MRDR) و بیشینه نسبت تغییر مکان نسبی میان طبقه ای (MIDR) و پارامتر شاخص شدت شتاب طیفی با میرایی پنج درصد در مود اول به دست آمده است . سپس منحنیهای IDA به دست آمده خلاصه سازی شده و مقادیر سه صدک آماری 16، 50 و 84 درصد با پردازش آماری بر روی محور تقاضا برای هر کدام از سازه ها به دست آمده است که امکان قضاوت بهتر نسبت به کلیات تحلیل و همچنین مقایسهی بین دو EDP استفاده شده را میسر میکند و در نهایت ظرفیت یا حالات حدی سازه ها در سطوح عملکرد متداول از این نمودارها به دست آمده است.
در ادامه منحنیهای آسیب پذیری، مربوط به فرو پاشی کلی سازه های مورد مطالعه، با در نظر گرفتن عدم قطعیتهای ذاتی و دانش در پاسخ سازه از روشهای مختلف به دست آمده و سپس با استفاده از منحنیهای تحلیل خطر لرزهای موجود برای سازه های مورد مطالعه، پتانسیل فروپاشی سازه ها از دو طریق منحنیهای آسیب پذیری فرو پاشی کلی و برآورد احتمال میانگین فراگذشت سالیانه فرو پاشی تعیین شده است.

پایان نامه کارشناسی ارشد: بررسی تاثیر کاهندگی بر ظرفیت فروریزش سازه های چند درجه آزادی
جمعه 99/10/26
مطالعه زلزله به قرنهای متمادی در گذشته بر میگردد. امروزه نیز زندگی و اموال صدها میلیون نفر از مردم جهان با خطر بزرگ ناشی از زلزلهها روبرو میباشد. سلامت تعداد زیادی از اقتصادهای محلی، ناحیهای و حتی ملی نیز در معرض خطر زلزلهها میباشند و این مخاطرات در کشورهای مختلف یکسان نیست و تحت شرایط مختلفی قرار دارد. در این میان بخاطر پیچیدهگیهای همراه با زلزلههای بزرگ اغلب روزها، هفتهها و ماهها وقت نیاز است تا فاجعه ناشی از زلزله درست درک شود. زمان در مناطق زلزله زده عامل مهمی است و هر گونه تاخیر در درک میزان فاجعه در پاسخهای بعدی زلزله و تخمین خسارتهای مالی و اجتماعی بعد از آن تاخیر ایجاد خواهد کرد. جنبههایی از زلزله از قبیل طبیعت زلزله شناختی، مهندسی زلزله و عواقب اقتصادی آن باید قبل از رخ دادن زلزله شناخته شود.
در این میان هدف اصلی مهندسی زلزله جلوگیری از فروریزش ساختمانهای است، که در معرض زلزله قرار دارند. فروریزش سازه به علت کاهش مقاومت سازه در برابر بارهای گرانشی وارده بر سازهای که در معرض زلزله قرار گرفته است، اتفاق میافتد. از نظر مالی فروریزش همراه با خرابی ساختمان و از دست رفتن هزینه مصرف شده برای ساخت آن است، اما باید توجه داشت که فروریزش سازه منبع اصلی مرگ و میر انسانهایی است، که در آن مکان به زندگی مشغول هستند، بنابراین از نظر فنی و مهندسی نیاز به بررسی احتمال، زمان، شیوه خرابی
سازه و سطح ایمنی یک سازه در برابر فروریزش میباشد.
1-2. بیان مسئله
با توجه به مشاهدات زلزلههای گذشته متوجه میشویم فروریزش در دو حالت صورت میگیرد که حالت اول بدلیل افزایش بیش از اندازه جابجایی سازه تحت بارهای جانبی، در ساختمان ناپایداری دینامیکی بوجود آمده و موجب خرابی میگردد. در حالت دوم تحت اثر ، اعضای سازه که تحت نیروی محوری فشاری و لنگر خمشی قرار میگیرند، حتی جزئی ترین لنگر خمشی باعث بوجود آمدن انحنا و خیز در عضو تیر-ستون میشود که این انحنا باعث میشود که در اثر نیروی محوری موجود لنگر خمشی ثانویهای بوجود آید این فرایند تا آنجا ادامه می یابد که بالاخره عضو مورد نظر یا به تعادل برسد یا در اثر تشدید از هم فروپاشد. عملا در سازه ها بدلیل اینکه اعضایی همچون ستون یک انحنای اولیه دارند که میتواند ناشی از نقص عضو یا خطا در اجرا باشد این پدیده همواره رخ میدهد. در نوع اول فروریزش بصورت آبشارگونه رخ میدهد، به بیان دیگر فروریزش بشکل کلی صورت میگیرد. اما در نوع دوم ابتدا از یک عضو شروع شده سپس به باقی اعضا سرایت کرده و نهایا منجر به فروریزش کلی سازه میگردد، که به آن فروریزش جزئی میگویند.
در سالهای گذشته پژوهشگران چندین روش ارزیابی فروریزش را ارائه کردهاند. آنها مستقلا بر روی میزان تاثیر بر ظرفیت فروریزش یک سازه تحقیق کردهاند. اما بعضی دیگر بر روی کاهندگی غیرخطی مدلهای اتصالات که بصورت تجربی میتوان آزمایش انجام داد، کار کردهاند؛ چرا که رفتار سازه در هنگام زلزله وارد حوزه غیرخطی میشود. میزان کاهندگی سیستم توسط منحنیهای هیسترتیک نمایش داده میشود که در فصول بعدی بطور مفصل در مورد آنها بحث خواهیم کرد.
ارزیابی ایمنی سازه مستلزم توانایی پیشبینی کاهش پاسخ دینامیکی سیستم سازه است. البته باید توجه داشت که موضوع فوق برای ساختمانهایی قدیمیتر، که کاهش مقاومت و سختی در آنها از تغییر شکلهای کوچک آغاز میشود مشکل است، زیرا که شبیه سازی مدلهای هیسترتیک آنها امکان ندارد، بنابراین معمولا فروریزش کلی با یک دریفت قابل قبول یا دستیابی به محدوده تغییر شکل در هر کدام از اجزای سازهای بررسی میشود. البته باید توجه کرد که برای توسعه یک روش سیستماتیک، تمام منابع فروریزش کلی میبایست ادغام شوند. در این روش میبایست شامل تاثیر کاهش مقاومت و تاثیرات در فروریزش سازه باشد.
1-3. اهمیت و ضرورت تحقیق
در هنگام بروز زلزله های مختلف یک سازه رفتارهای گوناگونی از خود نشان میدهند و با توجه به شدت زلزله سازه میتواند در حوضه رفتار خطی بماند و یا اینکه وارد حوضه رفتار غیرخطی شود. با توجه به اینکه فروریزش سازه در محدوده رفتار غیرخطی صورت میگیرد بنابراین این موضوع که فروریزش در چه ناحیهای از رفتار صورت بگیرد، مهم است. ضمن اینکه حداکثر شدت زلزلهای که یک سازه پایداری دینامیکی خود را در آن حفظ میکند برای ما مشخص میشود. هر چه میزان پایداری دینامیکی سازه در حوضه رفتار غیرخطی بیشتر باشد فروریزش آن سازه دیرتر صورت میگیرد و این بدین معنی است که سازه شدت زلزلهی بیشتری را میتواند تحمل کند. قابلیت پیش بینی فروریزش سازهها با افزایش اطلاعات در مورد خصوصیات و ویژگیهای اجزا بتنی و فولادی سازهها بیشتر خواهد شد.
البته مهمترین علت بررسی فروریزش سازهها کاهش صدمات جانی پس از زلزله است، چرا که پس از زلزله چنانچه سازههایی با ظرفیت فروریزش بالا داشته باشیم تلفات پس از زلزله نیز کاهش پیدا میکند ولی در صورت پایین بودن ظرفیت فروریزش تلفات افزایش پیدا میکند، از طرفی کاهش فروریزش سازهها خسارات مادی نیز کاهش پیدا میکند.
1-4. اهداف تحقیق
هدف اصلی این پایان نامه توسعه روش برای ارزیابی فروریزش کلی سازه در قابهای خمشی ویژه فولادی میباشد. در این پژوهش میزان تاثیر کاهش مقاومت اعضای سازه با عدم کاهش مقاومت اجزا سازه بر ظرفیت فروریزش مورد بررسی قرار میگیرند. ارزیابی فروریزش بر اساس اندازهگیری روابط شدت که میزان شدت نسبی حرکت زمین به پارامترهای مقاومت سازهای است، انجام میشود که شدت نسبی در فروریزش به ظرفیت فروریزش گفته میشود. در این بین در مدلسازی و استفاده از مواد مورد استفاده در مدلسازی ابهامات زیادی وجود دارد، هرچند روابطی آماری جهت مشخص کردن این ابهامات وجود دارد که از آنان بعنوان پایهای برای مدلسازی و مواد بکار رفته استفاده میشود. حال چنانچه با وجود این ابهامات تحلیل درستی از پیش بینی فروریزش کلی تحت اثر کاهش مقاومت اجزاء سازه بدست بیاوریم، اما هنوز هم موانع زیادی برای یک تحلیل کاملا واقعی بر سر راه ما در مورد چگونگی پیش بینی ظرفیت فروریزش سیستمهای سازهای وجود خواهد داشت که صرفا با گذشت زمان و انجام آزمایشهای بیشتر بر روی مدلهایی که نزدیکی بیشتری به ساختمانهای واقعی داشته باشند، میتوان این مشکلات و ابهامات را کمتر نمود. اجزای روش بکار رفته در این پژوهش عبارتند از:
– توسعه مدلهای سازهای دارای کاهش مقاومت و عدم کاهش مقاومت اعضا با ترکیب تمام فاکتورهای مهم که در فروریزش کلی موثر هستند.
– محاسبه ظرفیت فروریزش برای مجموعهای از مدلهای سازهای.
– ارزیابی اندازهگیری آماری ظرفیت فروریزش و تاثیر ابهامات در مدلها و حرکات زمین و پارامترهای سازهای در این اندازهگیری آماری.
– ارزیابی ظرفیت فروریزش مدلها در دو حالت با و بدون کاهندگی اعضا

پایان نامه: بررسی عملکرد لرزه ای قاب های خمشی فولادی طراحی شده بر مبنای مبحث دهم مقررات ملی ساختمان ایران با استفاده از منحنیهای شکنندگی
جمعه 99/10/26
یکی از مصیبت بار ترین و غم انگیز ترین حوادث طبیعی که سالانه تعداد زیادی از انسان ها را در نقاط مختلف جهان به کام مرگ می کشد زلزله است. به طوری که در سال های اخیر بیشتر این خسارات مالی و جانی متعلق به کشورهای ایران، ترکیه، چین بوده است.
با توجه به اهمیت این مسأله می توان اهمیت وجود آئین نامه های مناسب طراحی در برابر زلزله و شناخت عوامل ناشناخته در مسیر ایمن کردن ساختمان ها، بررسی بیشتر سازه های طراحی شده بر مبنای این آئین نامه ها و شناخت ضعف ها و مشکلات احتمالی این طراحی ها را به راحتی ملاحظه نمود. بدین منظور یکی از روش های بررسی عملکرد ساختمان ها با توجه به روش ها و آئین نامه های طراحی موجود ترسیم منحنی های شکنندگی می باشد. رسم این منحنی ها از سازه های هسته ای آغاز شد چرا که این سازه ها جز سازه های بسیار مهم اند و آسیب دیدگی آنها در هنگام زمین لرزه می تواند فجایع زیست محیطی و بسیار خطرناک به وجود آورد. در سال 1980 اولین منحنی شکنندگی برای یک نیروگاه هسته ای در ژاپن ترسیم گردید. در ایران این منحنی در سال 1386 برای ساختمان های بتن مسلح با دیوار برشی رسم گردید. اساس این منحنی ها بر مبنای شدت
زلزله ها (PGA) و احتمال آسیب پذیری سازه بر اساس عملیات آماری بر روی پارامترهای تقاضای هندسی نظیر نسبت بیشینه تغییر مکان جانبی، می باشد. در محور افقی این نمودار رده های مختلف PGA و در محور قائم احتمال فراگذشت از حدود آئین نامه ای بر اساس سطوح عملکرد IO و LS و CP می باشد. احتمال فراگذشت به وسیله توزیع لوگ نرمال به دست می آید. در سطوح عملکرد
فوق الذکر محدوده های به عنوان محدوده شکست در آئین نامه Fema356 ذکر گردیده است که از آن به عنوان انحراف معیار جهت رسیدن به احتمال مورد نظر استفاده می گردد. تحلیل دینامیکی فزاینده مورد استفاده در این تحقیق یکی از روش های آنالیز دینامیکی غیرخطی می باشد. در این تحلیل سازه تحت اثر یک سری از تحلیل های تاتریخچه زمانی قرار گرفته و شتاب نگاشت های مد نظر در رده های شدت PGA مقیاس می گردد.
جهت ارزیابی منحنی های شکنندگی و اینکه مشخص گردد احتمالات به دست آمده برای آسیب پذیری قاب ها تا چه حد قابل اعتماد است، مقایسه ای بین طیف آئین نامه 2800 و طیف پاسخ حاصل از 14 شتاب نگاشت مورد استفاده انجام می گردد و به موجب نتایج مقایسه، PGA آئین نامه را به دست آورده و احتمال آسیب پذیری را بر مبنای آن مشاهده می نماییم.
بررسی احتمال آسیب پذیری و آنالیز قاب ها و شاید بتوان گفت سازه های ساختمانی می تواند به دست آوردن احتمال فراگذشت (آسیب پذیری) کمک بسیار مناسبی جهت پیش بینی خسارات زلزله احتمالی در ساختمان، با کاربریهای مختلف و پیش بینی تمهیدات لازم برای ستادهای مدیریت بحران سازمان های بیمه گر و از همه مهمتر مقاوم سازی ساختمات هایی که نیاز مبرم به این مسأله دارند، باشد.
1-2- بیان مسئله
بررسی رفتار سازه ها در شهر های مختلف لرزه خیز همواره جزء اصلی ترین مسائل مهندسی زلزله بوده است. با گسترش روش های نوین آنالیز لرزه ای و استفاده روز افزون از طراحی لرزه ای سازه ها بر اساس عملکرد، لزوم بررسی لرزه ای ساختمان های طراحی شده بر اساس آئین نامه های موجود کشور به چشم می خورد. در این پژوهش عملکرد لرزه ای قاب های خمشی فولادی طراحی شده بر اساس مبحث دهم مقررات ملی ساختمان ایران مورد بررسی قرار می گیرد. برای این منظور از مفهوم منحنی های شکنندگی استفاده شده است. منحنی های شکنندگی اطلاعات عددی تشخیص را در رابطه با سطح خرابی و مشخصات ویژگی های زمین لرزه به طراحان می دهند. دستیابی به رابطه بین زمین لرزه و میزان خرابی از ابزارهای ضروری در ارزیابی تخمین خرابی ساختمان در مقیاس شهری می باشد.
جهت رسم منحنیهای شکنندگی از متغیرها و مجهولات زیر استفاده میشود(مراحل تولید منحنی):
1- انتخاب سازه ها و مدل سازی غیر خطی اعضاء
2- انتخاب شتاب نگاشت های زمین لرزه های گذشته با توجه به نوع خاک و مقیاس کردن آن به سطوح مختلف
3- مشخص کردن محدوده شکست با توجه به آئین نامه ها و دستور العمل ها
4- مشخص کردن عوامل مؤثر در شکنندگی لرزه ای مثل تغییر شکل محوری خمیری و تغییر مکان بین طبقه ای
5- انجام تحلیل دینامیکی فزاینده غیر خطی در سطوح مختلف شدت لرزه ای
6- انتخاب توزیع آماری و معادله احتمالی مناسب
7- تولید منحنی شکنندگی
در این منحنی ها محدوده شکست با عملکرد سازه رابطه مستقیم دارد. پس از تهیه منحنی های مذکور بر پایه معیار شدت مناسب برای پارامترهای تقاضای مهندسی مناسب نظیر تغییر مکان بین طبقه ای، چرخش مفصل های پلاستیک و تغییر شکل محوری خمیری میزان آسیب پذیری سازه مورد بررسی قرار می گیرد.
1-3 اهداف و فرضیات تحقیق
1-3-1 هدف کلی
هدف از رسم منحنی های شکنندگی بررسی احتمال خسارت وارده در شدت زمین لرزه های مختلف می باشد که با تحلیل های غیرخطی، با اعمال شتاب نگاشت ها با شدت ها و محتوای فرکانسی مختلف و به کارگیری توابع آماری و احتمالاتی و بهره گیری از پارامترهای تقاضای مهندسی به دست می آیند. منحنی های شکنندگی مورد نظر بر اساس دو مولفه بیشینه شتاب زمین و احتمال فراگذشت قاب ترسیم می گردند که بر این اساس می توان در مورد احتمال تخریب یا آسیب پذیری قابهای مورد نظر اظهار نظر نمود.
1-3-2 فرضیه اصلی
رفتار قاب در زلزله های فرضی و مورد بررسی، با رفتار کل سازه یکسان فرض شده است. در این پژوهش تنها به بررسی لرزه ای قاب های خمشی فولادی پرداخته می شود. این قاب ها برای منطقه اصفهان و خاک تیپ ш با تعداد طبقات 3، 5 و 8 و 12 و همچنین تعداد دهانه های 3 و 5 و ارتفاعات طبقات 10/3 و 1/4 متر طراحی می شوند. ضمناً طول دهانه قاب ها برابر 4 و 6 متر فرض شده است.
1-3-3 فرضیه فرعی
اطلاعات موجود از سازه دقیق و کافی و درست می باشد.