دانلود پایان نامه ارشد: ارائه روشی جدید در خوشه بندی اطلاعات با استفاده ازترکیب الگوریتم خفاش و Fuzzy c- means


داده و الگو یکی از شاخص­های بسیار مهم در دنیای اطلاعات هستند و خوشه­بندی یکی از بهترین روش­هایی است که برای کار با داده­ها ارائه شده است. قابلیت آن در ورود به فضای داده و تشخیص ساختار آن­ها باعث گردیده که خوشه بندی یکی از ایده­آل­ترین مکانیزم­ها برای کار با دنیای عظیم داده­ها باشد.
در خوشه­بندی، نمونه­ها به دسته­هایی تقسیم می­شوند که از قبل معلوم نیستند. بنابراین، خوشه­بندی یک روش یادگیری است که بدون

 

مقالات و پایان نامه ارشد

 دانش پیشین و مشاهده نمونه­های از قبل تعریف شده­، داده­ها را به صورت خود مختار و مستقل دسته بندی می­کند.

خوشه بندی در واقع یافتن ساختار در مجموعه داده­هایی است که طبقه بندی نشده­اند. به بیان دیگر خوشه­بندی قرار­دادن داده­ها در گرو­ه­هایی است که اعضای هر گروه از زاویه­ی خاصی به هم شباهت دارند. در نتیجه شباهت بین داده­های درون هر خوشه حداکثر و شباهت بین داده­های درون خوشه­های متفاوت حداقل می­باشد. معیار شباهت در اینجا، فاصله بوده یعنی نمونه­هایی که به یکدیگر نزدیک­ترهستند، در یک خوشه قرار می­گیرند. لذا محاسبه­ی فاصله­ی بین دو داده در خوشه­بندی بسیار مهم می­باشد؛ زیرا کیفیت نتایج نهایی را دستخوش تغییر قرار خواهد داد.
فاصله که همان معرف عدم تجانس است حرکت در فضای داده­ها را میسر می­سازد و سبب ایجاد خوشه­ها می­گردد. با محاسبه­ی فاصله­ی بین دو داده، می­توان فهمید که چقدر این دو داده به هم نزدیک هستند و در یک خوشه قرار می گیرند یا نه؟ توابع ریاضی مختلفی برای محاسبه­ی فاصله وجود دارند؛ فاصله اقلیدسی، فاصله همینگ و ….
1-1-بیان مسأله
خوشه­بندی یافتن ساختار، درون مجموعه­ای از داده­های بدون برچسب است و می­توان آن را  به عنوان مهم­ترین مسأله در یادگیری بدون نظارت در نظر گرفت. ایده­ی خوشه­بندی اولین بار در دهه­ی 1935 مطرح شد و امروزه با پیشرفت­ها و جهش­های عظیمی که در آن به­وجود آمده در کاربردها و جنبه­های مختلفی حضور یافته است. یک جستجوی ساده در وب یا حتی در پایگاه داده یک کتابخانه، کاربرد شگفت انگیز آن را برای ما آشکار می­سازد.  الگوریتم­های خوشه­بندی در زمینه­های مختلفی کاربرد دارد که به عنوان نمونه می­توان موارد زیر را برشمرد:
·        داده کاوی[1]: کشف اطلاعات و ساختار جدید از داده‌های موجود
·        تشخیص گفتار[2]: در ساخت کتاب کد از بردارهای ویژگی، در تقسیم کردن گفتار بر حسب گویندگان آن یا فشرده‌سازی گفتار
·        تقسیم‌بندی تصاویر[3]: تقسیم‌بندی تصاویر پزشکی یا ماهواره‌ای
·        وب (WWW): دسته‌بندی اسناد و یا دسته‌بندی سایت­ها و …
·        زیست‌‌‌شناسی[4]: دسته‌بندی حیوانات و گیاهان از روی ویژگی‌های آن­ها
·        برنامه ریزی شهری[5]: دسته‌بندی خانه‌ها بر اساس نوع و موقعیت جغرافیایی آن­ها
·         مطالعات زلزله‌نگاری[6]: تشخیص مناطق حادثه‌خیز بر اساس مشاهدات قبلی
·        کتابداری: دسته‌بندی کتاب­ها
·        بیمه: تشخیص افراد متقلب
·        بازاریابی[7]: دسته‌‌بندی مشتریان به دسته‌هایی بر حسب نیاز آن­ها از طریق مجموعه آخرین خرید‌های آنان.
با توجه به کاربرد روزافزون خوشه­بندی، امروزه شاهد ارائه­ی روش­های جدید و کارآمدتری هستیم که هر یک برای کاربردی خاص ارائه می­شود. ولی با همه این تلاش­ها هنوز خوشه­بندی در بسیاری از علوم آن­چنان که باید مورد استفاده قرار نگرفته است و قابلیت گسترش بسیار زیادی برای آن وجود دارد.
 

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی
This is a captcha-picture. It is used to prevent mass-access by robots.