دانلود پایان نامه ارشد : بررسی پخش مواد رادیواکتیو از یک راکتور هسته ای فرضی MW 5
مواد پرتوزای طبیعی از بدو تشکیل کره زمین در آن وجود داشته است. ولی با توسعه فنآوری و بهرهبرداری انسان از آن، منابع پرتوزای ساخت دست بشر، در محیط زیست رو به افزایش گذاشته و مواد پرتوزای مصنوعی که در نتیجهی فعالیتهای بشری در رشتههای گوناگون هسته ای می باشد، به محیط زیست وارد شده، و به نحوی جزء آلاینده های غذایی، آشامیدنی و هوای تنفس موجودات زنده و به ویژه انسان محسوب میگردند.
به منظور حفاظت رادیولوژیکی محیط زیست و به تبع آن حفاظت رادیولوژیکی موجودات زنده به ویژه انسان، شناسایی توام اکوسیستم (مناطق خاص زندگی که در آن گیاهان و جانواران محیط اطراف خود را تقسیم میکنند) و منابع پرتوزا و نحوه عملکرد، جابجایی، توزیع و رفتار هسته های پرتوزا در اجزای اکوسیستم، ضروری است.
به طور کلی هدف از حفاظت رادیولوژیکی، پایش انسان و محیط زیست در برابر عملکرد مواد پرتوزای طبیعی و مصنوعی موجود در محیط میباشد و منظور از تحقیقات در این زمینه، پیشبینی مسیرهای راهیابی مواد پرتوزا به محیط زیست و تخمین میزان دز دریافتی توسط مردم در مناطق مختلف است تا بتوان میزان خطر ناشی از پرتوگیریهای داخلی و خارجی را تعیین کرد.
بنابراین مطالعات و بررسی مداوم، جهت تعیین عملکرد مواد پرتوزا در محیط زیست مورد نیاز می باشد، تا نتیجه مطلوب و اطلاعات مورد نظر حاصل شود. بدین ترتیب حفاظت رادیولوژیکی محیط زیست به عنوان یک ضرورت اجتنابناپذیر جهت تنظیم اکوسیستم و جلوگیری از پرتوگیری ناخواسته مطرح می باشد.
یکی از این منابع پرتوزایی ساخت بشر، راکتورهای هستهای هستند که در خلال کار عادی، کسر کوچکی از مواد پرتوزا را از طریق هوا به محیط زیست وارد میکنند.
انرژی هسته ای در سال های اخیر به دلایل زیر تبدیل به یک منبع مهم انرژی شده است:
- تقاضای رو به رشد برای توان الکتریکی
- افزایش رقابت جهانی برای سوخت های فسیلی
- نگرانی درباره تابش گازهای گلخانه ای و تاثیر آن روی گرمایش زمین
- نیاز برای استقلال انرژی
بنابراین در عصر حاضر انرژی هستهای لازمه پیشرفت و خودکفایی هر کشوری است و در این بین ایران نیز از این قائده مستثنی نیست. از
اینرو، گسترش علوم و فنون هستهای و بومیسازی این فناوری، از اولویتهای نظام جمهوری اسلامی میباشد. با توجه به نیاز کشور به تولید رادیوایزوتوپها و رادیوداروها جهت درمان بیماران و همچنین تولید برق، ساخت راکتورهای تحقیقاتی و نیروگاههای هستهای در کنار راکتورهای موجود، ضروری به نظر میرسد. بدین منظور و در راستای سندهای چشم انداز توسعه کشور، ساخت راکتورهای هستهای تا توان2000 مگا وات در دستور کار قرار گرفته است.
اگرچه یک نیروگاه هسته ای، یک منبع خوب انرژی است و عمدتا تهدیدی برای محیط زیست به شمار نمی آید، ولی چنانچه حادثه ای مهم برای راکتور رخ دهد، میتواند منجر به یک فاجعه بشری شود. بنابراین خطر آزادسازی تصادفی مواد رادیواکتیو به محیط زیست میتواند پیامد مهم استفاده از نیروگاههای هسته ای باشد.
موارد متعددی از حوادث راکتورهای هسته ای وجود دارد، مانند:
- چاک ریور[1] در کانادا (1952)
- آیداهو فالا[2] در آمریکا (1957)
- تری مایل آیلند[3] در آمریکا (1979)
- چرنوبیل در اوکراین (1986)
از بین این حوادث، حادثه چرنوبیل به طور کلی ادراک بشر را از ریسک تابشی[4] دگرگون کرد. در 26 آوریل 1986 در اوکران حادثه ای مهم رخ داد که در نتیجهی آن یک مقدار زیادی ماده رادیواکتیو به اتمسفر آزاد شد که این مواد رادیواکتیو در شمال و جنوب اروپا و همچنین در کانادا و ایالات متحده آمریکا حس شد. تنها نیمهی جنوبی کره زمین آلوده نشد. این حادثه نشان داد که در صورت وقوع یک حادثه مهم و بزرگ هسته ای، نه تنها مکانی که در آن حادثه رخ داده است، بلکه اطراف آن نیز می تواند تحت تاثیر قرار گیرد.
به هر حال راکتورهای هسته ای، ذرات رادیواکتیو مایع و گازی ساطع میکنند و از آن جائیکه اثرات تابشها به طور خاص یک نگرانی مهم برای مردم و کشور است، ایمنی هستهای و محافظت انسان و طبیعت در برابر اشعه یونیزان موضوع مهمی است. البته قابل ذکر است که راکتورهای هستهای به گونه ای کاملا دقیق طراحی، ساخت و مانیتور می شوند که تا حد امکان از آزادسازی مواد رادیواکتیو جلوگیری شود.
راکتورهای هستهای به طور معمول و یا در اثر نقص سیستمهای ایمنی و همچنین در اثر سوانح هستهای و بلایای طبیعی، رادیونوکلوئیدهایی را از طریق سیستم تهویه در محیط آزاد میکنند و موجب افزایش دز محیط اطراف راکتور میشوند. پارامترهای مختلفی در میزان توزیع و نحوه انتشار مواد رادیواکتیو خروجی از راکتورها نقش دارند؛ شکل و حالت مواد رادیواکتیو خروجی، کیفیت فیلترهای جذب و سیستم تهویه، ارتفاع دودکش، سرعت باد، میزان بارندگی سالیانه منطقه، شرایط آب و هوایی محیط، ارتفاع ساختمانهای ساکنین اطراف راکتور از آن جملهاند.
هدف در طراحی راکتورهای هسته ای، کنترل کردن واکنش های زنجیره ای و همچنین اطمینان از وجود تغییرات کم در توان خروجی و یا تغییرات مجازی که در زمان های زیاد (دهها ثانیه) در توان خروجی ایجاد می شوند، می باشد.
اگر نقصی در راکتور رخ دهد که تغییرات توان بسیار سریع باشد، یک حالت گذرا را در راکتور ایجاد میکند و متاسفانه راکتورها طوری طراحی میشوند که با افزایش زمان ناشی از تغییرات توان، ممکن است قلب راکتور ذوب شده و یا حالت یکپارچه خود را از دست دهد. انتقال سریع گرما به یک خنککننده[5] مایع، میتواند موجب افزایش در فشار شود که ممکن است آسیب ساختاری شدید به راکتور (مانند حادثه چرنوبیل) را به همراه داشته باشد. بنابراین واضح است که ریسک، همواره در بهره برداری یک راکتور هستهای به مانند سیستم های پیچیده دیگر مثل نیروگاههای شیمیایی و یا پالایشگاههای نفتی، باید در نظر گرفته شود. اما آن چه راکتور هستهای را با دیگر نمونه های ذکر شده متفاوت می سازد این است که اگر نقصی در سیستم های راکتور رخ دهد، ممکن است باعث انتشار مقادیر زیادی از مواد رادیواکتیو به محیط خارج شود و اثرات یک رویداد و یا حادثه در راکتور هستهای میتواند تا هزاران کیلومتر مربع از اطراف نیروگاه را تحت شعاع خود قرار دهد، در حالی که حوادث شیمیایی، چه در بعد مسافت و چه از نظر مدت زمان و یا دوره طولانی آلودگی، اغلب نمیتوانند با حوادث هستهای که در راکتور هسته ای رخ میدهد، مقایسه شوند.
ملاک ICRP برای تعیین میزان تابشهای حرفه ای این است که ریسک متوسط به پرتوکاران نباید بیشتر از ریسک متوسط کارکنان صنایع متعارف و امن باشد. ضمن این که حداکثر دز معادل سالانه در حد 50 میلیسیورت است، ICRP می تواند میانگین دز معادل سالانه را برابر با یک دهم حد بالا فرض کند. کارکنان نیروگاه هسته ای، در حدود 5/1 میلیسیورت در سال دریافت میکنند که معادل ریسک سالانه ای در حدود 1 مورد در 30000 می باشد. با آمیختن تصادفات معمول و ریسکهای مربوط به اشعه، در مجموع ریسک سالانه مرگ برای کار در نیروگاه، برابر با 1 در 1200 می شود.
موارد ایمنی مربوط به حفاظت از پرتوگیری کارکنایی که در معرض مواد و پسماندهای رادیواکتیو قرار دارند، باید با دقت، کنترل و مانیتورینگ شود. بنا به توصیه 26ICRP در خصوص پرتوگیری افراد، تابش تک تک افراد جامعه و دز دسته جمعی مردم ناشی از پسماندهای رادیواکتیو باید به حدی پایین باشد که از نظر منطقی قابل دستیابی گردد و نیز با توجه به ملاحضات اقتصادی و اجتماعی کاهش داده شود.
در سایت یک راکتور هستهای، نظارت و کنترل مقادیر دز مجاز در قسمتهای مختلف توسط بخش فیزیک بهداشت هم در داخل سایت و هم در خارج سایت انجام میشود، تا اطمینان حاصل شود که عملیات نیروگاه از نظر مسائل حفاظتی مربوط به پرسنل داخل سایت و افراد جامعه در بیرون سایت به صورت امن و بیخطر انجام می شود.
بدین منظور تحلیل حوادث احتمالی که منجر به خارج شدن مواد رادیواکتیو به محیط میشوند، جهت به دست آوردن نحوه پخش و توزیع مواد رادیواکتیو و اندیشیدن تمهیداتی متناسب با مقادیر مختلف آلودگی در مرحله بعد از تحلیل حوادث، الزامی می باشد.
در بهرهبرداری از یک راکتور هستهای، سیستمهای کنترلی و حفاظتی متنوعی طراحی میشوند که در نهایت قلب راکتور به عنوان اصلیترین منبع رادیواکتیو، محافظت شده و از ذوب شدن آن جلوگیری خواهد شد.
در حال حاضر بیش از 300 راکتور تحقیقاتی در سراسر جهان موجود می باشند که بیش از 50 نوع آنها شامل راکتورهای تریگا [6] و بقیه شامل راکتورهای شناور در استخرهای آب سبک و همچنین راکتورهای آب سنگین تحت فشار با گردش جریان تحمیل شده[7] و قدرت های حرارتی در حدود ده مگاوات یا بیشتر هستند.
راکتورهای مورد مطالعه در این تحقیق یک راکتور تحقیقاتی است که قدرت حرارتی این راکتور 5 مگاوات می باشد.
1-1- مشخصات راکتور مورد مطالعه در عملکرد عادی
راکتور مورد مطالعه در عملکرد عادی، یک راکتور تحقیقاتی 5 مگاواتی فرضی از نوع استخری با آب سبک به عنوان کندکننده می باشد. سوخت مورد استفاده در این راکتور از نوع سوخت جامد ناهمگن است و آب در آن هم به عنوان خنککننده و هم حفاظ مورد استفاده قرار می گیرد. موارد استفاده این راکتور در کارهای پژوهشی، کارآموزی، آموزشی و همچنین برای تولید رادیوایزوتوپ ها میباشد. این راکتور تحقیقاتی می‑تواند در فیزیک، شیمی، مهندسی و صنعت مورد استفاده قرار گیرد. نوع سوخت این راکتور، اورانیوم با غنای 20 درصد که به صورت پودر U3O8 در آلومینیوم خالص پخش شده است، میباشد. سیستم خنککننده راکتور شامل سیستم های اولیه، ثانویه و سیستم پالایش می باشد ]1[.
نسخه قابل چاپ | ورود نوشته شده توسط نجفی زهرا در 1399/10/26 ساعت 07:26:00 ق.ظ . دنبال کردن نظرات این نوشته از طریق RSS 2.0. |