دانلود پایان نامه ارشد : سنتز و مطالعه بر روی گرانروی محلول،حل پذیری، گرماتابی و بلورینگی
جمعه 99/10/26
پلیمرهای با عملکرد بالا طبقهی مهمی از پلیمرها هستند که کاربردشان پیوسته در حال گسترش است که این کاربردها اغلب خواستار ترکیباتی مناسب و دارای خواصی مثل استحکام بالا، فرایندپذیری بالا ، چقرمگی، پایداری شیمیایی و حرارتی برجسته و ثابت دیالکتریک کم میباشند. پلیآمیدها، پلیایمیدها و پلی(آمید-ایمید)ها به خاطر داشتن چنین خواصی توجه هستند اما این دسته از پلیمرهای آروماتیک در سنتز و فراورش مشکل حل پذیری کم و دمای انتقال شیشهای (Tg) بالا را دارند. امروزه پژوهش های عملی و بنیادی روی افزایش فرایندپذیری و انحلال پذیری پلیآمیدهای آروماتیک متمرکز شده است تا کاربرد حرفه ای و صنعتی این پلیمرها افزایش یابد که از جمله این اصلاحات می توان به واردسازی اتصالات انعطافپذیر در زنجیرههای پلیمری، تعبیه گروههای حجیم در پیکره پلیمرها، حضور حلقه های هتروسیکل و همچنین حلقه های آویزان هتروآروماتیک در ساختار پلیمرها اشاره کرد. همچنین قرارگرفتن گروههای فلوئوردار در پیکره پلیمر، حل پذیری و عملکرد الکتریکی و دی الکتریکی پلیمر را افزایش میدهد که این افزایش به علت قطبش پذیری کم ، دوقطبی جزیی پیوندهای C-F و افزایش حجم آزاد می باشد. وجود گروههای هالوژنی مثل كلر و فلوئور پلیمرها را در برابر شعله، حلال، اسید و باز مقاوم می سازد كه باعث افزایش كاربرد آنها می شوند. از مهمترین این گروهها می توان به گروههای CF3 اشاره نمود که حضور این گروه برهمکنش های بین زنجیری را کاهش داده و با ایجاد سد چرخشی در پلیآمیدها حلالیت را تغییر می دهد. همچنین وجود واحدهای نفتالنی که گروههای آزادکننده الکترون مثل اتر یا آمین دارند و به عنوان یک بخش سخت با خواص فتواکتیو مطرح هستند، خواص ویژه ای به پلیمر
می دهند و می توانند حل پذیری و فرایندپذیری پلیمرهای مقاوم حرارتی را بدون كاهش قابل توجه مقاومت حرارتی افزایش بدهند.
1-1- پلیآمیدهای آروماتیک با عملکرد بالا
توسعه پلیمرهای با عملکرد بالا از سال 1950 به منظور استفاده در صنایع هوافضا و الکترونیک آغاز شد. اصطلاح عملکرد بالا به پایداری غیرعادی به هنگام قرار گرفتن در شرایط نامساعد و ویژگی هایی که پلیمرهای معمول را بهبود میدهند، اطلاق میشود. عمومی ترین مشخصات پلیمرهای باعملكرد بالا و مقاوم در برابر دما ماندگاری طولانی مدت (بیشتر از 1000 ساعت در˚ C177) ، دمای تجزیه حرارتی بالای ˚ C450، سرعت کم افت وزنی در دماهای بالا، دمای انحراف گرمایی بالا، داشتن ساختارهای آروماتیک، خواص مکانیکی عالی و وجود بخش های سخت که باعث افزایش (بیشتر از ˚ C200) میشوند، میباشد. بطور کل پلیمرهای مقاوم حرارتی برای استفاده در دماهای بالا، باید دارای ویژگی های زیر باشند:
الف- دمای ذوب )نرم شدگی) بالا (Tm)
ب- مقاومت در برابر تخریب اکسایشی در دمای بالا
ج- پایداری در برابر عوامل شیمیایی و تابشی
د- مقاومت در برابر دیگر فرآیندهای حرارتی تخریبی )غیر اکسایشی(
مهمترین فاکتورهایی که باعث عملکرد بالا و مقاومت گرمایی پلیمرها میشوند عبارتند از استحکام پیوندهای اصلی، پایدارسازی رزونانسی، نیروهای پیوندی ثانویه ( پیوند هیدروژنی، واندروالس، برهمکنش های قطبی و غیره)، توزیع وزن مولکولی، تقارن مولکولی، اتصالات عرضی، خلوص، مکانیسم شکافتگی پیوند، ساختارهای بین زنجیری سخت و افزودنی ها یا تقویت كننده ها ( فیبرها، خاك رس، نانوذرات مختلف) [25].
پلیآمیدها در طبیعت بصورت پروتئینها و الیاف طبیعی مانند ابریشم و پشم و بصورت سنتزی در الیاف مصنوعی و پلاستیكها یافت میشوند. اولین توسعه مربوط به پلیآمیدها با كار كاروترز پدر شیمی پلیمر در آمریكا، در سال 1935 میلادی آغاز شد. كاروترز، با استفاده از واكنش هگزا متیلن دیآمین و آدیپیك اسید موفق به تهیه پلی(هگزامتیلنآدیپامید) شد كه بعدها توسط کمپانی دوپونت نام تجاری نایلون6،6 بر روی این پلیآمیدها نهاده شد.[19] پلیمرهای با عملکرد بالا بواسطه معیارهایی مثل میزان مقاوت گرمایی، استحکام مکانیکی، چگالی مخصوص پایین، قابلیت هدایت بالا، خواص گرمایی و الکتریکی بالا، و عایق بودن در برابر صدا و مقاومت شعله بالا توصیف میشوند. از اینرو پلیآمیدهای آروماتیک به دلیل خواص مکانیکی و گرمایی بالایشان به عنوان پلیمرهای با عملکرد بالا مطرح میشوند که در تکنولوژی های پیشرفته میتوانند جایگزین ترکیباتی مثل فلزات و سرامیک ها گردند6-70-9-62] [.
جدیدترین، ساده ترین و معروف ترین پلیآمیدهای آروماتیک (آرامیدها) عبارتند از پلی پارافنیلن ترفتالامید (PPPT) و پلی متا فنیلن ایزوفتالامید (PMPI) که هر دوی آنها میتوانند به فیبرها سنتزی با مقاومت کششی بالا، مقاوم در برابر برش و شعله تبدیل بشوند. همچنین از آنها به عنوان پوشش، پرکننده و جلادهنده نیز استفاده میشود. از دیگر کاربردهای آنها میتوان به استفاده در صنعت اسلحه سازی، تولید پارچه های پیشرفته، صنعت هوافضا و تولید کامپوزیت های پیشرفته، عایق سازی های الکتریکی، سپرهای ضد گلوله، فیلترهای صنعتی، لباس ها و محافظ های ورزشی نیز اشاره کرد. دمای انتقال آرامیدهای تجاری، که بالاتر از دمای تجزیه آنهاست، و همینطور حل پذیری ضعیف آنها در حلال های آلی متداول، باعث شده که کاربرد آنها محدود و فرایند پذیری شان مشکل باشد[61].
پلیآمیدهای آروماتیك تجاری
پلیآمیدهای تمام آروماتیک، پلیآمیدهای سنتزی هستند که که حداقل 85% گروه های آمید در آنها مستقیم به دو حلقه آروماتیک متصل هستند.[70] نایلون 6،6 از جمله پلیمرهای مهندسی میباشد که دارای استحکام کششی و قابلیت مفتولشدن بالا، مقاومت شیمیایی خوب، ضریب اصطحکاک کم، عایق الکتریکی خوب و فراورش آسان میباشد. البته، این پلیمرها معایبی مانند، جذب رطوبت بالا، پایداری ابعادی کم، دمای تجزیه حرارتی کم و به خصوص آتشگیری آسان را دارند. دماهای گداز بسیار بالا در آرامیدهای تجاری که بالای دمای تجزیهشان واقع میشود و حلالیت پایین آنها در محلولهای آلی معمول، باعث سخت شدن فرایند پذیری آنها شده و کاربردشان را محدود میکند. در نتیجه، پژوهش های پایهای و کاربردی اخیر بر روی بهبود فرآیندپذیری و حلالیت آنها تمرکز دارد به این منظور که حوزهی کاربردهای تکنولوژیکی این مواد را گسترش دهند. شکل 1-1 ساختمان پلی پارا فنیلن ترفتالامید و پلی متا فنیلن ایزوفتالامید را نشان میدهد که آرامیدهای تجاری هستند.
اولین آرامید با جهت گیری تمام پارا، پلی پارا بنزآمید (PPBA) (Fiber B®) بود. PPBA در سال 1970 بوسیله PPPT با نام تجاری کولار جایگزین شد. بسپارش تراکمی آنها در دماهای پایین و در محلول ترفتالویین دی کلرید و پارافنیلن دی آمین در هگزا متیل فسفرآمید انجام گرفت. بعدها از N-متیل 2 پیرولیدون و برای انجام واکنش استفاده شد.
کارایی بالای کولار ناشی از ساختمان شیمیایی آن میباشد. ساختارهای تمام آروماتیک با استخلاف های تمام پارا، ماکرومولکولهای میله مانند را ایجاد میکنند که انرژی همدوسی بالایی دارند و به علت پیوندهای هیدروژنی درون مولکولی تمایل زیادی به متبلور شدن دارند. فیبرهای کولار میتوانند به کامپوزیت ها و موادی با مقاومت مکانیکی و گرمایی عالی تبدیل شوند.
پلیآمیدهای تمام آروماتیک با جهت گیری متا درحلقه فنیلین مثل PMPI ساختارهای کمتر خطی دارند و یک کاهش پیوسته در انرژی چسبندگی و تمایلشان به بلورینگی دیده میشود. این پلیآمید یک پلیمر با عملکرد بالا با مقاومت مکانیکی و گرمایی بالا میباشد که در سال 1967 تحت نام تجاری نومکس معرفی شد.
علاوه بر این هم بسپارش TCP با PPD و 3،4-دی آمینو دی فنیل اتر (ODA) منجر به ایجاد یک پلیمر نسبتا انحلال پذیر ODA/PPPT با نام تجاری تکنورا technora میشود(شکل1-1). عدم تقارن مونومر ODA و هم بسپارش، منجر به تولید پلیمری با نظم ساختاری و انرژِی همدوسی کمتر میشود [10-45-60-74]. در جدول 1-1 خلاصه ای از ویژگیهای فیزیکی الیافهای آرامیدی تجاری (پارامترهای شبکه بلوری، چگالی، درصد رطوبت متعادل، ویژگیهای کششی در دماهای اتاق و بالا، ویژگیهای حرارتی و مقاومت شیمیایی) و ویژگیهای فیلمهای آرامیدی تجاری نمایش داده شده است. همگی این پلیمرها دارای مقاومت حرارتی بالایی میباشند، و این امر نشان میدهد که حضوریک پلیمر در صنعت نیازمند مقاومت حرارتی بالای آن پلیمر است. پایداری حرارتی، یکی از زمینههای نوین در علوم پلیمری میباشد [69] . خواص حرارتی در پلیمرها به قدری حائز اهمیت میباشد که هم اکنون دستگاهها و روشهای جدیدی جهت اندازه گیری این خواص در آزمایشگاهها وپژوهشگاههای پلیمر بکار گرفته شده و هر روزدرحال پیشرفت میباشند.
دانلود پایان نامه ارشد : تاثیر اصلاح کننده بر خواص ترشوندگی پوششهای رسوب الکتریکی نیکل
جمعه 99/10/26
امروزه سطوح فوقآبگریز با زاویه تماس بزرگ با آب (بزرگتر از °150) به علت ویژگیهای منحصر به فردشان همچون خواص دفع آب، ضد رسوب، مقاومت بالا به خوردگی و خودتمیز شوندگی علاقه روز افزونی را به خود جلب کردهاند. محققان تلاش کردهاند که ویژگیهای سطوح طبیعی با خاصیت آبگریزی را تقلید کنند که از جمله این سطوح، برگ نیلوفر آبی[1] است. لازمه فوق آبگریز بودن یک سطح، انرژی سطحی پایین و پیروی از الگوی زبری خاص در ابعاد میکرو و نانومتر است. دو مدل مشهور برای توصیف ترشوندگی سطوح، مدل ونزل[2] و مدل کاسی- باکستر[3] است. روشهای متنوعی برای ایجاد زبری و تولید سطوح فوقآبگریز بکار رفته است که از جمله میتوان به اچکردن پلاسما، لیتوگرافی، اکسیداسیون آندی، سل ژل و رسوبدهی الکتریکی اشاره نمود. اغلب روشهای مذکور پرهزینه هستند و به دلیل عملیات شیمیایی دشوار و فرایندهای چند مرحلهای پیچیده به سادگی قابل استفاده در مقیاسهای صنعتی نمی باشند. در مقابل رسوبدهی الکتریکی مزایایی نظیر آسان بودن، هزینه کم و شرایط کاری قابل کنترل برای تولید انبوه دارد. در سالهای اخیر، تحقیقات وسیعی روی ساخت سطوح فوقآبگریز فلزی به روش رسوبدهی الکتریکی صورت گرفته است. محققین مشاهده کردند که برای فوقآبگریز شدن پوشش، مورفولوژی پوشش باید به صورت ساختار سلسله مراتبی میکرو- نانو باشد. همچنین مشخص شد که مورفولوژی سطوح به شدت به شرایط پوششدهی از جمله چگالی جریان، مدت زمان الکترولیز، pH ، دما و ترکیب حمام پوششدهی بستگی دارد. برای ایجاد ساختار سلسله مراتبی مناسب به افزودن ترکیبات معینی به حمام پوششدهی نیاز است که این افزودنیها، اصلاح کننده کریستال نامیده میشود. برای تهیه پوششهای نیکل با مورفولوژی سلسله مراتبی اغلب از اتیلندیآمونیوم دیکلرید و به ندرت از آمونیوم کلرید استفاده شده است. تحقیقات انجام شده روی اثر اتیلندیآمونیوم دیکلرید نشان میدهد که غلظت افزودنی روی مورفولوژی پوشش تاثیر قابل ملاحظهای دارد. مکانیسم افزودنیهای مذکور در فرایند رسوبدهی الکتریکی مشخص نشده است و در تعداد کمی از تحقیقات تئوریهای رشد برای تشکیل ساختارهای سلسله مراتبی پیشنهاد شده است. انرژی سطحی کم پارامتر مهم دیگر برای ایجاد خاصیت فوقآبگریزی است. عموماً سطوح فلزی با انرژی سطحی بالا به طور ذاتی آب دوست میباشند، بنابراین برای ایجاد خاصیت فوقآبگریزی روی فلزات نیاز به اصلاح
سطح با مواد دارای انرژی سطحی کم است. بدین منظور در بیشتر موارد از مواد آلی کاهنده انرژی سطحی استفاده میشود. در تحقیقات اخیر مشاهده شده است که پوششها با مورفولوژی زبر مناسب با نگهداری در هوا فوقآبگریز میشوند. محققین مکانیسمهای متعددی برای این رخداد پیشنهاد کردند و توافقی در مورد مکانیسم افزایش زاویه تماس با زمان وجود ندارد.
با توجه به اینکه نقش اصلاح کننده کریستال در فرایند رسوبدهی الکتریکی و ایجاد ساختار سلسله مراتبی مشخص نیست و پژوهشهای انتشار یافتهای در این زمینه وجود ندارد، هدف از این تحقیق بررسی مکانیسم اصلاح کننده کریستال در فرایند رسوبدهی الکتریکی میباشد. همچنین تاثیر مقادیر مختلف اصلاح کننده کریستال روی میکروساختار از جمله مورفولوژی، توپوگرافی و بافت ، رفتار ترشوندگی و مقاومت به خوردگی پوششهای نیکل بررسی میشود.
این پایان نامه در پنج فصل تنظیم شده است. ابتدا در فصل دوم این پایان نامه مروری بر منابع صورت گرفته سپس در فصل سوم چگونگی انجام آزمونها و مواد و روش تحقیق آورده شده است. نتایج به دست آمده در فصل چهارم مورد تجزیه و تحلیل قرار گرفتند و نهایتاً در فصل پنجم نتیجهگیری و پیشنهادات ارائه شده است.
2. فصل دوم
مروری بر منابع
2-1 معرفی و تاریخچه
بیش از 2000 سال پیش مشاهده شد که برخی از گیاهان دارای خاصیت خودتمیزشوندگی می باشند که به عنوان عامل نجاتبخش گیاه در محیطهای آلوده عمل میکند. نیلوفر آبی، نمونه معروفی از این نوع گیاهان میباشدکه معمولا در مردابها و آبهای سطحی در شرق آسیا وشرق آمریکای شمالی رشد میکند. مکانیسم ظهور این خاصیت به صورت راز باقی ماند تا زمانی که پیشرفت میکروسکوپ الکترونی روبشی (SEM) در اواسط دهه 1960 میلادی صورت گرفت. مطالعات روی اکثر برگهای گیاهان طبیعی در طول دهه گذشته آشکار کرد که سطح صاف ماکروسکوپی معمولا از زبریهای میکروسکوپی با مقیاسهای طولی مختلف تشکیل شده است و ساختار میکرو– نانوی سطح به همراه واکس اپیکیوتیکیولار باعث آبگریزی میشود. این کشف به عنوان یک پیشرفت بزرگ در زمینه فوقآبگریزی برای ساخت این سطوح به تقلید از طبیعت در نظر گرفته میشود. علاوهبراین در سال 2007 میلادی به دو نوع میکرو ساختار سطحی عمده در برگهای گیاهان با خاصیت فوقآبگریزی پی برده شد که یکی ساختار سلسله مراتبی میکرو– نانو و دیگری ساختار میکرو الیاف است. این یک کشف حیاتی بود و به عنوان نقطه آغازی برای توسعه روشهای ساخت سطوح فوقآبگریز به تقلید از سطوح فوقآبگریز طبیعی محسوب میشود. شکل 2‑1، الف و ب به ترتیب تصاویر SEM برگ نیلوفرآبی با بزرگنمایی کم و زیاد است. همانطور که مشاهده میشود سطح برگ نیلوفرآبی به طور یکنواخت با برآمدگیها و فرورفتگیهای 3- 10 میکرومتری بافتدار شده است و این ساختار با مواد مومی آبگریز به اندازه 30- 100 نانومتری آراسته شده است. اعتقاد براین است که مشارکت این سلسله ساختار سطحی و مواد موم- مانند آبگریز دلیلی بر فوقآبگریزی، یعنی زاویه تماسی حدود °162 میباشد [1].
شکل 2‑1 تصاویر سطوح فوقآبگریز با ساختار سلسله مراتب، الف و ب به ترتیب تصاویر SEM برگ نیلوفرآبی با بزرگنمایی کم و زیاد، ضمیمه شکل (ب) زاویه تماسی سطح با آب در حدود °162 [1]. |
شکل 2‑2، تصاویر سطوح فوقآبگریز طبیعی با ساختار میکرو الیاف را نشان میدهد. شکل 2‑2، الف و ب مربوط به تصاویر SEM پشت برگ رامعی[7] را با زاویه تماس °159 است. طبق شکل مذکور، شمار زیادی الیافهای کاملا نرم با قطر 1-2 میکرومتر به طور یکنواخت روی سطح توزیع شدهاند و ساختار واحدی را تشکیل دادهاند [1].
شکل 2‑2 تصاویر SEM سطوح فوقآبگریز طبیعی با ساختار میکرو الیاف. الف و ب تصاویر SEM پشت برگ رامعی با بزرگنمایی به ترتیب کم و زیاد و ضمیمه شکل ب زاویه تماس سطح با آب در حدود °164 [1]. |
2-2 ترشوندگی سطوح جامد و اهمیت آن
ترشوندگی سطح جامد جزء ویژگیهای مهم آن میباشد، چون کنترل ترشوندگی در بیشتر کاربردهای عملی بسیار سخت است. بیان مستقیم این ویژگی به وسیله زاویه تماس[8] (CA) با سطح میباشد. سطوح با زاویه تماس بزرگتر از °150، فوقآبگریز نامیده میشوند. این سطوح به دلیل ویژگیهایی همچون ضد چسبندگی، ضد آلودگی و خودتمیزشوندگی مورد توجه ویژه قرار دارند. اینها ویژگیهای مطلوب برای کاربردهای صنعتی و زیستی همچون رنگهای ضد لک برای قایقها، ضد چسبندگی برف به آنتنها و پنجرهها، خودتمیزشوندگی شیشه اتومبیل، پالایش فلز، پارچههای ضد لک و پوششهای معماری ضد گرد و غبار به شمار میآیند [2].
مواد با سطح انرژی کم، برای مثال سطح با گروههای فشرده شش وجهی 3-CF، زاویه تماس °120 با آب دارند. این سطوح به آسانی پاک میشوند، اما ویژگی خود تمیزشوندگی ندارند. اما قطرات آب روی سطوح فوقآبگریز طبیعی همچون برگ نیلوفرآبی به آسانی میلغزد، بنابراین به عنوان حذف کننده آلودگیها عمل میکنند. مکانیسم خود تمیزشوندگی برگ نیلوفرآبی مطالعه شده است. در فصل مشترک سیال چسبناک و سطح جامد، معمولا وضعیت مرز غیرلغزشی حکمفرماست. لغزش روی مرز در مقیاس چند ده نانومتری رخ میدهد که در مقیاس ماکروسکوپی محسوس نمیباشد. به هر حال، وقتی قطرهای روی سطح فوقآبگریز زبر کج شده به سمت پایین حرکت میکند، لغزش ماکروسکوپی موثر روی مقیاس سازگار با ویژگی سطح رخ میدهد. قطره آب در حال لغزش روی برگ نیلوفر آبی مانند توپ الاستیک رفتار میکند نه یک سیال. در مورد سطح آبگریز معمول، به دلیل اینکه وضعیت مرز غیرلغزشی قطرات آب در امتداد ذرات آلوده کننده قرار میگیرند، این ذرات عمدتا در کنارههای قطرات قرار می گیرند و پشت قطره دوباره رسوب میکنند (شکل 2‑3، الف). در مورد سطوح زبر دافع آب، فصل مشترک آب– جامد به کمترین حد میرسد. آب، قطرات کروی تشکیل میدهد و ذرات از سطح جمع میشوند (شکل 2‑3، ب). لغزش قطرات آب و جمع شدن ذرات آلودگی از سطح برگ نیلوفر آبی، به اثر لوتوس[9] معروف است [2].
دانلود پایان نامه ارشد :تاثیر اقلیم در تیپولوژی معماری شهرستان گنبد
جمعه 99/10/26
اقلیم به عنوان یکی از عوامل موثر در طراحی معماری همواره مورد توجه طراحان بوده و در گذشته دور نقش مهمی در معماری ساختمان ها داشت. در دوران مدرن تکنولوژی و صنعت روند استفاده از اقلیم را در معماری کند نمود، امروزه با آلودگی های به وجود آمده و شرایط و مشکلات اقتصادی که در مورد استفاده از انرژی به وجود آمده است، باید به فکر کاهش مصرف سوخت های فسیلی در ساختمان بود. بنابراین توجه به اقلیم در همه ابعاد، خصوصا در معماری ساختمان ها امری بدیهی است. لذا اولین قدم جهت معماری صحیح شناخت عوامل و عناصر اقلیمی می باشد. آب و هوا یکی از عناصر تاثیر گذار بر زندگی انسانهاست و مطالعه ویژگی های آب و هوا به عنوان یکی از اجزای اثر گذار طبیعت در زندگی انسان ضرورت دارد. در برنامه ریزی های معماری، یکی از مطالعات ضروری، مطالعات اقلیمی می باشد. برای بهبود راحتی و آسایش شهروندان، معماری باید با آگاهی از شرایط آب و هوایی منطقه طراحی شود. معماری و طراحی ساختمان همساز با اقلیم عبارت است از: نگهداری وضعیت میکروکلیماهای مسکن در محدوده آسایش. اما از زمانی که به دلیل پیشرفت های صنعتی امکان استفاده از تجهیزات مکانیکی برای سرمایش و گرمایش ساختمانها فراهم شد، معماری ایران نیز دچار تحول گردید و از حدود ۵۰ سال پیش در طراحی و اجرای ساختمانها به مسائل اقلیمی کمتر توجه شد. با شروع بحران انرژی در دنیا، در ایران نیز از حدود ٢۰ سال پیش لزوم توجه به مسائل اقلیمی در ساخت و ساز بناها مجددا مطرح گردید.
روشهایی که امروزه برای تحلیل وضیعت اقلیمی و تعیین ضوابط معماری همساز با اقلیم مورد استفاده قرار می گیرند توسط افرادی چون پن واردن، گیونی، ماهانی و… ارائه شده که غالبا متکی به آمار هواشناسی است اما در همه جای نقاط کشور ایستگاه هواشناسی موجود نمی باشد. در هر صورت ساختمانی که با محیط طبیعی خود هماهنگ یا به اصطلاح همسازی اقلیمی داشته باشد در بسیاری از مناطق کشور می تواند بدون نیاز به مصرف سوخت فسیلی و استفاده از وسایل کنترل مکانیکی، شرایط حرارتی مناسبی را در تمام طول سال به ساکنان خود عرضه نماید که تغییرات دما، رطوبت، جریان هوا و تغییر مداوم روشنایی فضاهای چنین ساختمانهایی محیط مطبوع و دلپذیری را در طول فصلهای سال برای ساکنان این ساختمانها فراهم می سازد، از نظر کنترل فضاهای داخل ساختمان، اولین گام در استفاده از انرژی های طبیعی، هماهنگ سازی ساختمان و به طور کلی محیط مسکونی، با شرایط اقلیم حاکم بر آن است (کسمایی، ۱٣٦٨). این هماهنگ سازی به دلایل زیر در حیطه کار جغرافیدانان قرار می گیرد:
۱ – اطلاعات اقلیمی مورد نیاز، اطلاعاتی است که اقلیم شناسان با آن آشنایی و سرو کار دارند.
٢ – اکثر محاسبات مورد نیاز همچون زاویه تابش، موقعیت خورشید و. . . در حیطه جغرافیای ریاضی است.
٣ – فرآیندهای طراحی ساختمانها حداقل از نظر مکانیابی در حیطه کار اقلیم شناسان قرار دارد.
۱ – ٢ – طرح مساله
موقیعت جغرافیایی و گردش عمومی جو هر منطقه تعیین کننده شرایط اقلیمی آن منطقه می باشد که این شرایط در طول زمان تثبیت شده و سبب می شود هر منطقه شرایط اقلیمی خاص خود را داشته باشد. تاثیر عناصر اقلیمی (دما، بارش، باد، تابش و رطوبت) بر ساختمان یکی از مقوله های کاربردی اقلیم است که در چند دهه اخیر مد نظر طراحان ساختمان قرار گرفته است، امروزه اهمیت و ضرورت توجه به شرایط اقلیمی در طراحی و ساخت کلیه ساختمانها، ثابت شده است. توجه به خصوصیات اقلیمی و تاثیری که در شکل گیری ساختمان می گذارند از دو جهت حائز اهمیت است: از یک سو ساختمانهای هماهنگ با اقلیم، یا ساختمانهای با طراحی اقلیمی، از نظر آسایش حرارتی انسان کیفیت بهتری دارند. از سوی دیگر هماهنگی ساختمان با شرایط اقلیمی موجب صرفه جویی در مصرف سوخت مورد نیاز جهت کنترل شرایط محیطی این گونه ساختمانها می شود. این بخش از هوا شناسی امروزه با توجه به عمر رو به زوال منابع انرژی فسیلی و گرانی انرژی در دنیا اهمیت زیادی یافته است و طراحان ساختمان با کمک اقلیم شناسان از حداکثر امکانات بالقوه اقلیمی هر منطقه جهت استفاده بهینه از منابع انرژی بهره می برند. یکی از عناصر اقلیمی بسیار مهم که در طراحی ساختمان باید به آن توجه کافی شود تابش آفتاب و تاثیر آن بر ساختمان می باشد نور خورشید همیشه برای ایجاد روشنایی طبیعی در ساختمان لازم است ولی از آن جا که این نور در نهایت به حرارت تبدیل می شود میزان تابش مورد نیاز برای هر ساختمان باید با توجه به نوع آن و شرایط اقلیمی محل آن با معماری صحیح تنظیم شود. جهت استقرار ساختمان در رابطه با تاثیر باد نیز مهم می باشد که در اینجا بیشتر به باد های غالب توجه می شود که با توجه به جهت وزش باد ساختمان چگونه طراحی شود اقلیم معماری در تلاش است در هر منطقه با توجه به کاهش منابع تجدید نشدنی (نفت، گاز و . . .) نوع معماری را معرفی کند که از یک طرف استفاده از سوختهای فسیلی را به حداقل ممکن برساند و از طرف دیگر معماری متناسب با سازگاری اقلیمی را به همراه داشته باشد به همین دلیل اقلیم شناسان سعی دارند که از حداکثر امکانات بالقوه اقلیمی هر منطقه جهت استفاده بهینه از منابع انرژی بهره ببرند. در این تحقیق به بررسی الگوی بافت قدیم و جدید گنبد جهت بررسی میزان انطباق الگوهای مختلف معماری (قدیم و جدید) با شرایط اقلیمی خواهیم پرداخت، مساکن قدیمی بیشتر از از مصالح سنتی و بومی استفاده می کرده اند در صورتیکه مساکن جدید از آهن، سیمان، آجر و روش های جدید ساختمان سازی استفاده می کنند.
در این پژوهش سعی خواهد شد مناسب ترین الگوی معماری برای شهر گنبد براساس شاخص های اقلیمی مورد استفاده در تحقیق معرفی شود و در نهایت میزان انطباق معماری گذشته و معماری جدید با الگوهای مطلوب تحلیل گردد و همچنین ارائه راهکارهایی برای آسایش شهری در آینده در جهت پیشبرد استانداردهای معماری شهری گام نهاد و نتایج آن مورد استفاده ساکنین شهر و به لحاظ موضوعیت می تواند در اقتصاد منطقه، برنامه ریزی مدیران شهرداری، اداره مسکن و شهرسازی و. . . قرار گیرد.
۱ – ٣ – سوالات تحقیق
۱ – چه الگوی معماری متناسب با اقلیم در شهرستان گنبد می باشد؟
٢ – اولویت طراحی معماری اقلیمی در شهرستان گنبد با کدام فصل است؟
۱ – ۴ – فرضیات
این تحقیق بر اساس پش فرض های زیر شکل گرفته است.
۱ – تیپولوژی معماری بافت قدیم شهر نسبت به بافت جدید شهر انطباق بیشتری با شرایط اقلیمی دارد.
٢ – در طراحی معماری اقلیمی اولویت با شرایط تابستان است.
۱ – ۵ – اهداف
هدف کلی از مطالعات حاضر، ارائه تصویری دقیق و جامع از ویژگی های منطقه مورد مطالعه در ارتباط با آسایش حرارتی انسان، به منظور مشخص ساختن میزان اهمیت توجه مطالعات اقلیمی در طراحی محیط های مسکونی و در نهایت ارائه دستورالعمل هایی جامع جهت طراحی فضاهای مسکونی است. البته اهداف این تحقیق را می توان به صورت جزئی تر به صورت زیر بیان نمود:
۱ – ارائه الگویی مناسب از معماری همساز با اقلیم جهت نیل به یک آسایش طبیعی.
٢ – ارائه و معرفی محاسن و معایب معماری قدیم.
٣ -ارائه و معرفی محاسن و معایب احتمالی موجود در ساختمانهای جدید.
۴ – ارائه روش های استفاده بهینه از پتانسیل های اقلیمی.
۱ – ٦ – روش تحقیق
در این پژوهش با توجه به مطالعه و بررسی تحقیقات انجام گرفته در این زمینه، و اهداف مشخص شده در فوق مراحل زیر به عنوان گام های تحقیق اتخاذ گردید.
الف – مطالعات کتابخانه ای شامل:
۱ -جمع آوری اطلاعات هواشناسی شهر گنبد در دوره آماری ٢۰ ساله (۱٩٩٣-٢۰۱٢) از ایستگاههای هواشناسی و سینوپتیک گنبد و بررسی و تحلیل آنها با استفاده از نرم افزار کامپیوتری Excle و Minitab .
٢ – جمع آوری منابع مورد نیاز در رابطه با تحقیق (کتاب، مجله، مقاله، آمار نامه ها و سایت های اینترنتی).
٣ – مطالعه شرایط زیست اقلیم شهر گنبد بر اساس روشهای الگی، پن واردن، ماهانی، گیونی.
ب – مطالعات میدانی شامل :
۱- انتخاب نمونه هایی از مساکن با الگوی طراحی قدیمی و جدید در منطقه مورد مطالعه.
٢ – بررسی میدانی سیمای شهر بر اساس اصول و مبانی طراحی شهری همساز با اقلیم.
٣ – مقایسه الگوی معماری قدیم و جدید از لحاظ طراحی، جهت گیری و مصالح.
دانلود پایان نامه ارشد : تاثیر عصاره گیاه موسیر Allium hirtifolium بر برخی فاکتورهای بیوشیمیایی و بافت پانکراس
جمعه 99/10/26
:
دیابت شیرین نوعی اختلال متابولیک است که بدن در آن توانایی استفاده از قند و چربی را از دست می دهد. این بیماری به علت اختلال در ترشح انسولین و یا مقاومت به انسولین به وجود می آید و در هر دو حالت موجب افزایش گلوکز خون(هیپرگلایسمی) و دفع گلوکز در ادرار(گلیکوزوری) می شود. دیابت از زمان های خیلی پیش شناخته شده است. این بیماری با علائم مشخصی مانند پلی اوری(افزایش میزان ادرار)، پلی دیپسی[12] (تشنگی زیاد)، پلی فاژی[13] (اشتهای زیاد) و کاهش وزن همراه است(2).
دیابت یکی از مشکلات جدی دنیای امروزاست. براساس گزارش فدراسیون بین المللی دیابت ، 246 میلیون بیمار مبتلا به دیابت در سراسر دنیا وجود دارد. شیوع بیماری دیابت به سرعت درحال پیشرفت می باشد، به طوری که انتظار می رود شمار بیماران در سال 2025 به 380 میلیون نفر افزایش پیدا کند (3).
دیابت با مشکلات کوتاه مدت مانند هیپوگلاسیمی و مشکلات بلند مدت همچون بیماری های قلبی وعروقی، نفروپاتی ، نوروپاتی و رتینوپاتی همراه است (4).
سلول های بتای جزایر لانگرهانس که مسئول ترشح انسولین هستند نسبت به میزان گلوکز موجود در خون حساس هستند و درپاسخ به افزایش یا کاهش می دهند.علاوه بر این سلول های بتای جزایر لانگرهانس ، در پاسخ به تغییرات اسیدهای آمینه اسیدهای چرب خون انسولین ترشح می کنند. ترشح انسولین توسط سیگنال های نورونی خاص ، هورمون ها و عوامل فارماکولوژیک تنظیم و تعدیل می شود. در افراد دیابتی نوع یک انسولین تولید نمی شود و یا مقدار آن به قدری کم است که برای کنترل قند خون کافی نیست(5).
دیابت ملیتوس (شیرین) به دو دسته اصلی دیابت نوع یک و دیابت نوع دو تقسیم می شود(6).
علامت دیابت نوع یک در اغلب موارد خود ایمنی نسبت به سلول های بتا است. دیابت نوع دو علت پیچیده تری دارد و سبب مقاومت بافت های عضلانی و چربی به انسولین ایجاد می شود (7).
درمراحل پایانی دیابت نوع دو، بافعال شدن چندین مرحله از سیکل آپوپتوز(مرگ برنامه ریزی شده) سلول های بتا دچار مرگ سلولی شده ودراثر فقدان انسولین ناشی از آن حالتی بسیار شبیه به دیابت نوع یک ایجاد می گردد بدین ترتیب دربیماران دیابتی سطح گلوکز خون افزایش یافته و از آن جا که سلول های بتای پانکراس قادر به پاسخ گویی به محرک های انسولین ساز نیستند تزریق روزانه انسولین همانند بیمارانی که دارای دیابت نوع یک هستند ضروری است(8).
اختلال دررشد وحساسیت به عفونت های مختلف نیزممکن است باهیپرگلاسیمی مزمن همراه باشد (9).
درحالات بسیارشدید ممکن است کتواسیدوز یا یک حالت هیپراسمولار غیرکتوزی پیشرفت کرده و منجربه بی حسی ، کما ، ودرغیاب یک درمان موثر، مرگ شود.این علائم اغلب شدید نبوده یا ممکن است حضورنداشته باشند، درنتیجه هیپرگلاسیمی لازم برای ایجاد تغییرات پاتولوژیکی و عملکردی ممکن است مدت ها پبش از تشخیص دیابت حضورداشته باشد (10).
- طبقه بندی دیابت:
درسال 1980 ، سازمان بهداشت جهانی[14](WHO) ،برمبنای توصیه های گروه داده های اصلی دیابت ایالات متحده[15](NDDG)یک طبقه بندی ازدیابت پیشنهادکرد. این طبقه بندی(بازبینی شده1985) نشان دهندهء پیشرفت های دانش مربوط به اتیولوژی وپاتوژنز دیابت بود.اصطلاحات توصیفی دیابت جوانان وبالغین منسوخ گردیده وبه ترتیب بادیابت وابسته به انسولین وغروابسته به انسولین جایگزین گردیدند.باتوجه به نیازتعدادی ازبیماران مبتلا به دیابت نوع دو به انسولین جهت کنترل مناسب قند خون، این نامگذاری نیزمنسوخ ودرسال 1997 انجمندیابت امریکا[16](ADA) دیابت رامجددا طبقه بندی کرد.این طیقه بندی جدید به جای نیاز به انسولین دربعضی مراحل ، بیماران رابرطبق اتیولوژی دیابت تقسیم بندی می کند(11).
اختصاص یک نوع دیابت به یک فرد اغلب به شرایط موجود در زمان تشخیص بستگی دارد، و بیشتر افراد دیابتی به آسانی در یک گروه مجزا گنجانده نمی شوند. برای مثال، شخصی با دیابت حاملگی[17](GDM) ممکن است بعد از زایمان نیز به هایپرگلایسمی ادامه داده و ابتلا به دیابت نوع دو مشخص شود(9).
اما در اکثر موارد، دیابت به دو دسته بزرگ تقسیم می شود. دسته اول دیابت نوع یک[18]است، که به علت نقص کامل در ترشح انسولین می باشد. دسته دوم، که بسیار شایع تر است ، یعنی دیابت نوع دو، علت بیماری ترکیب مقاومت به انسولین و پاسخ جبرانی ناکافی ترشح انسولین است(9).
دانلود پایان نامه ارشد : تاثیر عملیات سرد کردن زیر صفر بر ساختار میکروسکوپی و رفتار تریبولوژیکی فولاد
جمعه 99/10/26
در این پژوهش تأثیر زمان عملیات زیر صفر بر رفتار سایشی فولاد 7147/1 (5120) موردمطالعه قرار گرفته است. جهت انجام عملیات کربوره کردن، نمونهها درون جعبههایی از فولاد نسوز با ترکیبی از پودر زغال، باریم کربنات و سدیم هیدروکسید به نسبت 1:1:50 قرار گرفت و به مدت 6 ساعت، در دمای C◦ 920 کربوره شد؛ سپس در داخل این جعبه در هوا تا دمای محیط خنک شدند. عملیات آستنیته کردن در دمایC◦ 930 به مدت 1 ساعت بر روی نمونهها اعمال و در روغن کوئنچ شد. بهمنظور بررسی تأثیر زمان فرایند زیر صفر عمیق، نمونهها به مدتزمان 1، 24، 30 و 48 ساعت در نیتروژن مایع در دمایC◦ 196- نگهداری شدند و سپس در دمای محیط در اتاق نگهداری شد. بهمنظور بهبود خواص فولاد و آزادسازی تنشهای داخلی ناشی از کوئنچ، نمونهها به مدت 2 ساعت در دمای C ◦ 200 در کوره نگهداری شدند. نمونهها پس از آماده سازی سطحی، تحت آزمونهای مختلف قرار گرفتند. برای تعیین فازها از روش پراش پرتو ایکس استفاده شد؛ بدین منظور نمونهها در ابعاد مناسب تهیه و با استفاده از نرمافزار Xpert فازهای موجود با استفاده از عناصر اولیه تعیین شد. آزمون سایش به روش گلوله روی دیسک با استفاده از گلولهای از جنس کاربید تنگستن بر نمونههای دیسکی با دو بار 80 و 110 نیوتون به مسافت 1000 متر در رطوبت هوای 5±30% و درجه حرارت C◦ 5±25 انجام شد. سختی نمونهها بهصورت ماکرو در مقیاس راکول سی اندازهگیری شد. اندازهگیری سختی نمونهها قبل و بعد از بازگشت، با بار اعمالی 30 کیلوگرم انجام گردید. همچنین ریز سختی نمونهها با استفاده از دستگاه ریز سختی سنجی و با نیروی g100 انجام گردید؛ سطوح سایش ابتدا توسط استون تمیز شده و با استفاده از میکروسکوپ الکترونی روبشی و میکروسکوپ نیروی اتمی (AFM) موردمطالعه قرار گرفت. محصولات سایش نیز توسط میکروسکوپ الکترونی روبشی و طیفسنجی تفکیک انرژی پرتو ایکس (EDS) مورد بررسی قرار گرفت. مطالعات پراش پرتو ایکس حاکی از کاهش در مقدار آستنیت باقیمانده در اثر اعمال عملیات زیر صفر بوده بگونهای که در زمان های بیش ازیک ساعت، پیک آستنیت باقیمانده مشاهده نشدهاست. بررسیهای میکروسکوپ نوری و میکروسکوپ الکترونی روبشی توزیع بهتر کاربیدها، ریز شدن و افزایش کسر حجمی کاربیدها را در عملیات زیرصفرعمیق نشان داد. بدین ترتیب عملیات زیر صفر عمیق منجر به افزایش در سختی در حد 4 تا 33% و تا 24 ساعت ، افزایش مقاومت سایشی تا %39/191 میگردد. با افزایش بیشتر زمان عملیات زیر صفر، مقاومت سایشی نمونهها کاهش یافته است؛ بهگونهای که در نمونهی 48 ساعت عملیات زیر صفر شده مقاومت سایشی کاهش یافته است. علت افزایش سختی نمونهها کاهش میزان آستنیت باقیمانده در اثر عملیات زیر صفر عمیق و دلیل کاهش مقاومت سایشی نمونهها پس از 24 ساعت، رشد کاربیدها و توزیع غیریکنواخت آن در ساختار و در نتیجه ضعیف شدن زمینه بوده است؛ بنابراین مدت زمان 24 ساعت عملیات زیر صفر عمیق بر فولاد 7147/1 زمانی بهینه است.
کلمات کلیدی: عملیات زیر صفر عمیق، آستنیت باقیمانده، کاربید، مقاومت سایشی، سختی
در بسیاری از کاربردهای صنعتی نیاز به قطعاتی است که دارای سطحی سخت بوده و درعینحال از چقرمگی یا مقاومت به ضربهی خوبی نیز برخوردار باشند. ازجمله مواردی که میتوان در این رابطه بهعنوان مثال به آنها اشاره کرد عبارتاند از:میللنگ، میل بادامک، چرخدنده و قطعات مشابه. این قطعات باید سطحی بسیار سخت و مقاوم در برابر سایش داشته و همچنین بسیار چقرمه و مقاوم در برابر ضربههای وارده در حین کار باشند.
بسیاری از قطعات فولادی را میتوان به نحوی عملیات حرارتی کرد که در پایان دارای مجموعهای از خواص بالا باشند،یعنی درحالیکه از مقاومت به سایش خوبی برخوردارند، دارای استحکام دینامیکی خوبی نیز باشند. این نوع عملیات حرارتی که اصطلاحا به سخت کردن سطحی موسوماند، آخرین عملیاتی هستند که باید در مرحلهی پایانی ساخت قطعه و پسازانجام تمام مراحل مربوط به شکلدهی نظیر ماشینکاری انجام شود.
روشهای مختلف عملیات حرارتی که به کمک آنها میتوان سطح قطعات را سخت کرد، عمدتاً به دو دسته تقسیم میشوند. دستهی اول عملیاتی که منجر به تغییر در ترکیب شیمیایی سطح فولاد میشوند و به عملیات حرارتیشیمیایی یا ترموشیمی موسوماند، نظیر کربندهی، نیتروژندهی و کربن نیتروژندهی. دستهی دوم روشهایی که بدون تغییر ترکیب شیمیایی سطح و فقط به کمک عملیات حرارتی که در لایهی سطحی متمرکز شده، انجام میشوند و باعث سخت شدن سطح میگردند و به عملیات حرارتی موضعی موسوماند، مانند سخت کردن شعلهای و سختکردن القایی. در آلیاژهای آهن–کربن و فولادها، مارتنزیت از سردکردن سریع آستنیت به وجود میآید. واژهی مارتنزیت که برای مدتها فقط به ساختار سخت حاصل از سریع سرد کردن فولادهای کربنی اطلاق میشود برای قدردانی از دانشمند معروف آلمانی به نام مارتنز است. در بهکار بردن واژهی مارتنزیت، اخیراً بهجای محصولات حاصل، تأکید بیشتر بر روی طبیعت دگرگونی گذاشتهشده است. مارتنزیت فازی است که توسط یک دگرگونی مارتنزیتی یا جابجایی گروهی
اتمها حاصل میشود، گرچه ممکن است فاز یادشده، ترکیب شیمیایی، ساختار بلوری و خواص کاملاً متفاوتی از مارتنزیت در فولادها داشته باشد. دمایی را که دریک آلیاژ دگرگونی آستنیت به مارتنزیت شروع میشود، دمای شروع تشکیل مارتنزیت نامیده و آن را با
Ms نشان میدهند. در حقیقت، Ms نشان دهندهی مقدار نیروی محرکهی ترمودینامیکی لازم برای شروع دگرگونی برشی آستنیت به مارتنزیت است. با افزایش درصد کربن، دمای Ms بهطور قابل توجهی کاهش مییابد. در حقیقت کربن موجود بهصورت محلول جامد، استحکام یا مقاومت برشی آستنیت را افزایش میدهد و بنابراین با افزایش کربن نیرومحرکهی بیشتری جهت شروع لغزش برای تشکیل مارتنزیت لازم است. این نیروی محرکهی بیشتر، با سرد کردن فولاد تا دمایی پایینتر و یا بهعبارتدیگر تحت تبرید بیشتر(Ms کمتر) به دست میآید. دمای پایان تشکیل مارتنزیت (Mf)یا دمایی که دگرگونی آستنیت به مارتنزیت دریک آلیاژ دادهشده خاتمه مییابد نیز تابعی از درصد کربن آلیاژ است.
آستنیت باقیمانده فازی نرم بوده و در دمای پایین ناپایدار است؛ بهگونهای که در دمای پایین و در حین کار به مارتنزیت ترد تبدیل میشود. تبدیل آستنیت به مارتنزیت تقریباً 4% انبساط حجمی ایجاد میکند که منجر به اعوجاج قطعات میشود. بنابراین از عملیات زیر صفر یا بازگشت چندتایی در دمایی نسبتاً بالا و یا مدتزمان طولانی برای کمینه کردن میزان آستنیت باقیمانده در فولادها استفاده میشود.
دو نوع عملیات زیر صفر وجود دارد: 1) زیر صفر سطحی که در محدوده دمایی 100- تا C°60- انجام میشود. این عملیات منجر به کاهش آستنیت باقیمانده و افزایش مقاومت سایشی میشود. 2) زیر صفر عمیق که در دماهای زیر C°125- انجام میشود.
اثرات زیر صفر عمیق عبارتاند از:
- تبدیل آستنیت باقیمانده به مارتنزیت
- کاهش تنشهای پسماند
- تشکیل کاربیدهای بسیار ریز که در بین کاربیدهای درشت قرار میگیرند
- تشکیل ابرهای نابجایی در فصل مشترک زمینهی مارتنزیتی و کاربیدها در طول فرایند همدما سازی و تشکیل کاربید
- توزیع یکنواخت کاربیدها ،کوچک شدن اندازهی کاربیدهای ثانویه، افزایش میزان و چگالی آنها
- افزایش مقاومت سایش خراشان و سایش خستگی
- افزایش استحکام کششی و پایداری
- افزایش سختی
- پایداری ابعادی ماده
- تولید ساختار مولکولی چگال تر
- افزایش هدایت الکتریکی فلزات
- افزایش مقاومت به خوردگی
پارامترهای زیر صفر عبارتاند از: نرخ سرمایش، دمای همدما سازی، زمان همدما سازی، نرخ گرمایش، دما و زمان بازگشت و دمای آستنیته کردن.
تحقیقات بسیاری بر روی فولادهایی که درصد عناصر آلیاژی و یا کربن آنها بالاست، صورت گرفته است. در این پژوهشها با حصول ترکیب مناسبی از توزیع کاربیدها و کاهش یا حذف آستنیت باقیمانده خواص فولادهای مورد مطالعه را بهبود دادهاند.
فولاد 7147/1، فولادی کربوره شونده (سمانته) بوده که در ساخت قطعاتی که ترکیبی از استحکام متوسط، چقرمگی و مقاومت سایشی بالا نیاز است، مورداستفاده قرار گرفته است و گاه برای تهیهی قطعات مورد مصرف صنایع خودروسازی همچون چرخدنده و میللنگ کاربرد دارد. در فولادهایی که به منظور سختی کاری سطحی تحت عملیات کربورهکردن قرار میگیرند، با افزایش درصد کربن سطح، Ms کاهش و میزان آستنیت باقیمانده در اثر سریع سرد کردن در سطح افزایش خواهد یافت.
در این پژوهش عملیات زیر صفر عمیق به منظور بهبود خواص سایشی فولاد 7147/1 در زمانهای مختلف انجام شده است؛ در فصل دوم تحقیقات صورت گرفته بر فولادهای مختلف، فصل سوم مواد و روش تحقیق، فصل چهارم نتایج و بحث و در نهایت در فصل پنجم، نتایج حاصل و پیشنهاداتی در راستای بررسیهای بیشتر و کارآمد گردآوری شده است.
2-1- معرفی و تاریخچه
فولاد آستنیتی آلیاژی از آهن و کربن همراه با عناصر دیگر در حالت محلول است که با عملیات نفوذی در محلول آستنیتی تجزیه و همگنسازی میشود. زمانی که فولاد حرارت داده میشود ساختار کریستالی آهن به مکعبی مرکزدار تغییر مییابد. استحالهی آستنیت به مارتنزیت از دمایی که دمای آغاز مارتنزیت یا Ms نامیده میشود، آغاز میشود. برای اغلب فولادهای خاص، استحاله همدما بوده و همانطور که دما به دمای پایان مارتنزیت میرسد (Mf)، توسعه مییابد. مقداری آستنیت، آستنیت باقیمانده، همیشه پس از سخت سازی حضور دارد. مارتنزیت بیشتر و درصد کربن بیشتر، سختی فولاد را افزایش میدهد. میزان کربن، دمای آغاز و پایان استحالهی مارتنزیت را تحت تأثیر قرار میدهد. Ms و Mf میتواند پایینتر از دمای اتاق باشد؛ فولاد بهصورت جزئی به مارتنزیت تبدیل شده و بقیهی ساختار را آستنیت باقیمانده تشکیل میدهد. این دو دما همچنین با افزایش اندازه دانه کاهش مییابد [1].
2-2- آستنیت باقیمانده
دمای شروع استحاله مارتنزیت (Ms) و دمای پایان این استحاله (Mf) در فولادها به درصد کربن و درصد عناصر آلیاژی بستگی دارد (شکل2-1). همانطور که از شکل 2-1 مشخص است، وقتی فولادی با درصد کربن بالای 65/0 %کوئنچ میشود، تغییر حالت آستنیت به مارتنزیت در دمای اتاق (oC20) پایان نمییابد. درنتیجه مقداری از آستنیت باقی خواهد ماند که به آستنیت باقیمانده موسوم است [2]. در جدول 2-1 تأثیر 1% از عناصر آلیاژی بر دمای شروع استحاله مارتنزیتدر فولادهایی با 9/0-1% کربن آورده شده است. البته تأثیر عناصر آلیاژی بر دمای استحاله مارتنزیتی به درصد کربن در فولاد نیز بستگی دارد. در جدول 2-2 تأثیر 1% کروم بر دمای شروع استحاله مارتنزیتی در فولادهایی با درصدهای مختلف از کربن آورده شده است [3]. در شکل 2-2 منحنی استحاله مارتنزیت آورده شده
است. همانطوری که مشخص است استحاله مارتنزیت درA˝r(M) ، که همان دمای Msاست شروع میشود. اگر دما کاهش پیدا کند، استحاله پیشرفت کرده و مقدار مارتنزیت افزایش مییابد. اگر عملیات کوئنچ تا دمای محیط انجام شود، استحاله مارتنزیتی در دمای oC 20 متوقف میگردد. سرد کردن فولاد تا دمای t˝ که همان دمای Mf است منجر به افزایش درصد مارتنزیت میشود ولی مقداری آستنیت باقیمانده در ساختار حضور دارد [2]. آستنیت باقیمانده که یک فاز نرم است باعث کاهش سختی فولاد پس از کوئنچ خواهد شد. اگر درصد آستنیت باقیمانده بالاتر از 10% باشد باعث کاهش فاحش سختی در نمونه میشود (شکل 2-3). هر چه درصد کربن بالاتر باشد، درصد آستنیت باقیمانده نیز بیشتر خواهد بود (شکل 2-4). اگر یک فولاد هایپریوتکتویید از منطقه کاملاً آستنیتی در بالای Acm سرد شود، ساختار پس از سرد کردن از مارتنزیت و آستنیتت باقیمانده تشکیل خواهد شد و همانطور که در شکل 2-3 مشخص است سختی با افزایش درصد کربن، به دلیل افزایش در مقدار آستنیت باقیمانده، کاهش خواهد یافت؛ اما اگر فولادهای هایپریوتکتوید از منطقه دوفازی آستنیت – سمانتیت، کوئنچ شوند، ساختار نهایی فولاد از مارتنزیت – سمانتیت – آستنیتت باقیمانده تشکیل میشود. تحت این شرایط سختی این فولادها یکسان بوده و وابسته به درصد کربن نیست [2].
شکل2-1. دمای شروع و پایان استحاله مارتنزیت (f Mو Ms) با توجه به درصد کربن در فولاد [3].
جدول2-1. تأثیر 1% از عناصر آلیاژی بر دمای شروع استحاله مارتنزیت در فولادهایی با 9/0 – 1% کربن [3]
تغییر در دمای شروع استحاله مارتنزیتی (oC) | عنصر آلیاژی |
55- | Mn |
35- | V |
30- | Mo |
17- | Ni |
15- | Cr |
12- | W |
10- | Cu |
Si | |
12 | Co |
30 | Al |
جدول 2-2. تأثیر 1% کروم بر دمای شروع استحاله مارتنزیتی در فولادهایی با درصد کربن مختلف [3]
تغییر در دمای شروع استحاله مارتنزیتی به ازاء 1% کرم(°C) | درصد کربن فولاد |
4- | 4/0% |
10- | 8/0% |
17- | 1% |
25- | 2/1% |
شکل2-2. منحنی استحاله مارتنزیت [3, 2].
ریزساختار فولادهای مارتنزیتی متناسب با درصد کربن به دورویه تغییر میکند: اول، فولادهای غیر آلیاژی با درصد کربن کمتر از 5/0 -%Wt 6/0 که مارتنزیت تیغهای جابجا شده در آنها حین کوئنچ کردن تشکیل میشود؛ فولادهایی با درصد کربن بیش از 1%، مارتنزیت بشقابی دوقلویی شده تشکیل میدهند و ترکیبی از مارتنزیتهای تیغهای و بشقابی در سطوح میانی درصد کربن تشکیل میشوند. بنابراین سطح کربوره شده میتواند مخلوطی از مورفولوژیهای مارتنزیت را داشته باشد؛ بهگونهای که مارتنزیت بشقابی در لایههای بیرونی پرکربن غالب بوده و با نزدیک شدن به مغز قطعه، مارتنزیت تیغهای غالب است. عناصر آلیاژی که آستنیت را مستحکم میکنند، تشکیل مارتنزیت بشقابی را در سطوح پایینتر کربن، ترغیب میکنند. در محدودهی کربن که انتقال از مارتنزیت تیغهای به بشقابی رخ میدهد، میزان آستنیت باقیمانده در ساختار کوئنچ شده افزایش مییابد؛ بههرحال، میزان آستنیت باقیمانده تابعی از متغیرهای دیگر است؛ این میزان با کاهش نرخ کوئنچ و افزایش درصد عناصر آلیاژی، افزایش مییابد. بنابراین در یک درصد مشخص کربن، درصد آستنیت قطعات کوئنچ شده میتواند بیشتر از مقادیر نشان دادهشده در شکل 2-4 باشد. اگرچه سختی مارتنزیت با افزایش درصد کربن بهطور یکنواخت افزایش مییابد، سختی کامپوزیتهای آستنیتی-مارتنزیتی حاصل از کوئنچ، معمول بالای تقریباً%Wt 6/0، حالت مسطح خواهد داشت (شکل 2-3) [4].