دانلود پایان نامه ارشد : مدول­های هم­درون­برپوشا و حلقه­های هم­ایده­آل راست اصلی

 

ابتدا تاریخچه­ای مختصر از مدول­های درون­بر، هم­درون­بر، ­درون­بر­پوشا و هم­درون­­­پوشا ارائه  

­می­دهیم. اولین باردرسال1979 توسط خوری مفهومی به نام مدول­های­درون­بر معرفی شد. R – مدول M درون­بر گفته ­می­شود هرگاه به­ازای­ هر زیر­مدول غیرصفرN از M ، داریم :

 HomR(M,N)¹ 0. درسال­های ­بعد مفهوم درون­بری توسط مولفان دیگرازجمله ژئو، ریزوی­و رومن واخیراً توسط­اسمیت9، حقانی­ و ودادی مورد تحقیق و بررسی قرارگرفته ­است. سپس در سال2007 مفهوم­دوگانی از درون­بری به نام هم­درون­بری توسط امینی، ارشاد و شریف ارائه شد.

 مدول M هم­درون­بر گفته ­می­شود هرگاه به ­ازای­ هر زیر­مدول سرهN  از  M، داشته باشیم :

HomR(M/N , M) ¹ 0 . سپس مفهوم مدول­های درون­بر­پوشا توسط قربانی و ودادی در سال 2009 ارائه شد که توسیعی از مفهوم حلقه­ pri  می­باشد.  

حلقه R، حلقه­ ایده­آل­ راست اصلی یا به اختصار حلقه­ pri ، نامیده ­می­شود ­هرگاه، هر ایده­آل راست آن اصلی باشد. توسیع این مفهوم در مدول­ها درون­برپوشایی نامیده ­شده­است.

یک R- مدول ­راست M درون­برپوشا گفته­ می­شود هرگاه به ­ازای­ هر زیر­مدول غیرصفر N از M همریختی غیرصفرپوشایی از M  به N موجود باشد. بنابر قضیه اول یکریختی و با توجه به این

نکته که  یک مدول اصلی یکریخت با  R/Iاست ، حلقه R یک حلقه­ pri  است اگر و تنها اگر مدول RR درون­برپوشا باشد. دوگان این مطلب به­نام هم­درون­برپوشایی توسط قربانی ارائه شده­است. R – مدول M هم­درون­برپوشا گفته­ می­شود هرگاه به ­ازای­ هر زیر­مدول سره N از M  همریختی غیرصفر یک ­به ­یکی از M/N  به M موجود باشد.

در این پایان­نامه مفهوم هم­درون­بر­پوشایی، قضایای مربوطه و دوگان­ آن تحقیق می­شود که برگرفته از مرجع ]3[ می­باشد.

1-2. تعاریف وقضایای مقدماتی

        در سراسر این پایان­نامه حلقه­ها شرکت­پذیر و یکدار می­باشند. (تمام مدول­ها مدول راست می باشند.) درابتدا یادآوری، سپس تعاریف اولیه و بعد قضایای مقدماتی به صورت نکته و لم بیان می­شود.

 

 

مقالات و پایان نامه ارشد

 

یادآوری

     فرض­کنید R یک حلقه باشد.R  – مدول M را ساده گویند اگر زیرمدول غیربدیهی نداشته باشد. مدول M نیم­ساده نامیده ­می­شود اگر هر زیرمدولش یک جمعوند آن باشد.

     زیرمدول L از M اساسی ­نامیده ­می­شود و می­نویسیم ­Lvess M هرگاه به ­ازای هر  N £ M اگر L ∩ N = 0 ، آنگاه =0 N . به­طور معادل L vess M  اگر و تنها اگر به ­ازای­ هر عنصر ناصفر xÎM ، rÎR موجود باشد به­طوری­که  0 ¹ xrÎ L .

      زیرمدول K از M زاید ­نامیده­ می­شود و می­نویسیم K<< M ، ­هرگاه به ­ازای هر  N £ M  اگرK + N = M   آنگاه = M  N.

      فرض کنید M  یک R- مدول راست باشد، X زیرمجموعه­ای از M و Y هم زیرمجموعه­ای از R ، پوچساز راست X در R  با r(X) و پوچسازچپ Y در  M با l(Y)  نمایش داده­  می­شود و تعریف می­کنیم :

r(X) = { r Î R : X r = 0 }            l(Y) ={ m Î M : mY = 0 }

همچنین برای S- مدول چپ N ، r(Z) وl(W)  به­طور مشابه برای هر Z Í S و هر

W Í N به صورت زیر تعریف می­شود :

N  (Z) ={ n Î N : Z n = 0 }           l (W) = { s Î S : sW = 0 }

  اگر  X = {a}، آنگاه پوچساز راست آن با  r(a )  نشان داده­ می­شود و داریم :  

 r(a)= r(X) و نیز   l(a)= l(X).

با استفاده از قضیه 2-15 از مرجع [1] نتایج زیر را داریم :

اگر A و B دو زیرمجموعه R – مدول راست M  باشند و AÍ B آنگاه r(B) Í r(A) . بوضوح Í l(rR (A)) A و می­توان نتیجه گرفت (A))) Í r(A)  rR (lM (rR . از سوی دیگر با قرار دادن  C= rR (A)درC Í l(rR ©) (به­ازای هرC Í R) داریم :

 r(A) Í rR(l(r(A)))پس (A))) Í r(A)  rR (lM (rR ؛

در نتیجه(A))) = r(A)  rR (lM (rR .

 به طریق مشابه اگر I و J دو زیرمجموعه R باشند و I Í J ، آنگاه l(J) Í l(I)  . بوضوح

I Í r(l(I)) و می­توان نتیجه گرفت :  lM (r(l(I)))=l(I) .

       اگرM یک R -مدول و U یک کلاس از R – مدول­ها باشدTr (M ,U ) و Rej (M, U ) به­ صورت زیر تعریف می­شوند که زیرمدول­هایی از M می­باشند.

Tr (M ,U )=å { Im f | f : ua →  M  ,   uaÎ U برای برخی }

Rej (M, U )=∩ {ker f | f : M →  ua  ,    uaÎU  برای برخی }

اگر S مجموعه تمام R – مدول­های راست ساده باشد، به ­ازای هر R – مدول M،Soc (MR)    بزرگترین زیرمدول نیم­ساده M است و با توجه به بخش 9 از مرجع [1]  به صورت زیر تعریف می­شود :

Soc(MR) = Tr (M ,S) = å {K | است M یک زیرمدول ساده از K }

        = ∩ { L | L vess M }.

همچنین  R –  مدول M نیم­ساده است اگر و تنها اگر  soc(MR) = MR .

ضمناً به سادگی دیده­ می­شود R –  مدول M نیم­ساده است اگر و تنها اگر زیرمدول اساسی غیر بدیهی نداشته ­باشد.

R      – مدول M پروژکتیو نامیده ­می­­شود هرگاه به ­ازای هر نمودار از R- همریختی­ها و  R- مدول­ها به صورت زیرکه سطر آن دقیق باشد ، R- همر­یختی→ A    M موجود باشد به­طوری­که نمودار زیر جابجایی باشد.

1-2-1. R –  مدول پروژکتیو M

یا به­طور معادل اگر هر دنباله دقیق کوتاه به صورت A→ B→ M → 0 0 →  شکافته شود ، آنگاه M پروژکتیو است.

R     – مدول M انژکتیو نامیده­ می­­شود هرگاه به­ ازای هر نمودار از R- همریختی­ها  و R- مدول­ها به صورت زیرکه سطر آن دقیق باشد، R – همر­یختی→  M   B موجود باشد به­طوری­که نمودار جابجایی باشد.  

1-2-2. R –  مدول انژکتیو M

همچنین R – مدول M انژکتیو است هرگاه به ازای هرایده­آل راست I از R ، هر همریختی

f : I→ M  را بتوان از R به M گسترش داد. (لم بئر)

1-2-3. R –  مدول انژکتیوM  (لم بئر)

تعاریف و قضایای زیر برای حلقه­ها و مدول­های راست بیان می­شود و به­طور مشابه برای مدول­های چپ نیز برقرار است.

تعریف 1-2-1. حلقه R، خود- انژکتیو راست نامیده­ می­شود، هرگاه RR انژکتیو باشد.

تعریف 1-2-2. حلقه R، حلقه انژکتیو اصلی راست یا به ­اختصار P- انژکتیو راست نامیده­ می­شود، هرگاه به ­ازای هر aÎR  هر R – همریختی f :aR→ R   را بتوان به R– همریختی

:RR→  R    گسترش داد .

تعریف1-2-3 . مجموعه عناصر منفرد R- مدول راست M  را با Z(M)  نشان می­دهیم  و تعریف می­کنیم :

Z(M) = {mÎM |  r(m) vess RR  }  £ M .

تعریف1-2-4 . R – مدولM، نامنفرد نامیده ­می­شود هرگاه Z(M) = 0  و نیز منفرد نامیده می­شود هرگاه  Z(M) = M .

تعریف1-2-5 . زیرمدول N ازR – مدول M ، کاملاً پایا نامیده ­می­شود هرگاه به ­ازای­ هر

ÎEnd (M)  f   داشته­ باشیم f(N) Í N  . 

تعریف1-2-6 . یک حلقه را حلقه دو راست(right duo)گویند، هرگاه هر ایده­آل راست آن

دو طرفه باشد. به­طور مشابه حلقه دو چپ تعریف ­می­شود.

همچنین اگر  R یک حلقه دو چپ باشد وyÎ R   آنگاه  yR Í Ry ،  از آنجا که Ry دو طرفه است به ­ازای هر Î R  r،yrÎ Ry   و در نتیجه yR Í Ry .

تعریف1-2-7. عنصر aÎR ، منظم چپ نامیده­ می­شود هرگاه= 0  l(a). به­طور مشابه عنصرbÎR ، منظم راست است هرگاه= 0  r(b) .  

تعریف1-2-8 .حلقه R ، کاهشی است هرگاه عنصر پوچ­توان غیرصفر نداشته ­باشد.

تعریف1-2-9. حلقه R ، برگشت­پذیر (reversible)نامیده­ می­شود هرگاه به­ ازای هر a,bÎ R  ­ اگر= 0  ab  آنگاه ba = 0  .

تعریف1-2-10. ایده­آل سره P  از حلقه R نیم­اول نامیده ­می­شود هرگاه به ازای ­هرایده­آل  IازR   اگرI Í P ، آنگاه Í P  I .

تعریف1-2-11. حلقهR  نیم­اول­ گفته ­می­شود، هرگاه صفر یک ایده­آل ­نیم­اول باشد.

تعریف1-2-12. فرض کنید R یک حلقه باشد. رسته تمام R – مدول­های راست را با MR  و رسته تمام R – مدول­های چپ را با  RM  نشان می­دهند.

تعریف1-2-13. فرض کنید R یک حلقه و a یک درون­ریختی از  R باشد ، حلقه R[x, a] حلقه چندجمله­ای ­اریب نامیده ­می­شود هرگاه شامل­تمام چند جمله­ای­های چپ با متغیر x به ­صورت  xi باشد جایی­که rÎR ، به­طوری­که به­ازای­ هر اسکالرrÎR  ضرب با عمل

r= a®.x  x تعریف شود.

تعریف1-2-14. R- مدولM را فشرده­پذیر گویند هرگاه به­ازای هر £ M   Nیک تکریختی از

M  بهN  موجود باشد.

      در زیر دو مفهوم تولید کردن و مولد ، و دوگان آن هم-­تولید کردن و هم-­مولد  بیان­ می­شود.

تعریف1-2-15. فرض کنیدU   یک کلاس از R – مدول­ها باشد .گوییم مدول M توسط U ( به طور متناهی ) تولید می­شود (U  ، M را ( به­ طور­ متناهی ) تولید می­کند)  اگر یک مجموعه اندیس­شده (متناهی)  (Ua)aÎJ  در U  و همریختی پوشای ÅJ  Ua →   M →   0  موجود باشد.

اگر= {U}  U ، آنگاه گوییم U ، M را تولید می­کند هرگاه  مجموعه اندیس J  و همریختی پوشای M →  f  : U (J)  موجود باشد.

 

 

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی

درخواست بد!

پارامتر های درخواست شما نامعتبر است.

اگر این خطایی که شما دریافت کردید به وسیله کلیک کردن روی یک لینک در کنار این سایت به وجود آمده، لطفا آن را به عنوان یک لینک بد به مدیر گزارش نمایید.

برگشت به صفحه اول

Enable debugging to get additional information about this error.