دانلود پایان نامه ارشد : مدولهای همدرونبرپوشا و حلقههای همایدهآل راست اصلی
ابتدا تاریخچهای مختصر از مدولهای درونبر، همدرونبر، درونبرپوشا و همدرونپوشا ارائه
میدهیم. اولین باردرسال1979 توسط خوری مفهومی به نام مدولهایدرونبر معرفی شد. R – مدول M درونبر گفته میشود هرگاه بهازای هر زیرمدول غیرصفرN از M ، داریم :
HomR(M,N)¹ 0. درسالهای بعد مفهوم درونبری توسط مولفان دیگرازجمله ژئو، ریزویو رومن واخیراً توسطاسمیت9، حقانی و ودادی مورد تحقیق و بررسی قرارگرفته است. سپس در سال2007 مفهومدوگانی از درونبری به نام همدرونبری توسط امینی، ارشاد و شریف ارائه شد.
مدول M همدرونبر گفته میشود هرگاه به ازای هر زیرمدول سرهN از M، داشته باشیم :
HomR(M/N , M) ¹ 0 . سپس مفهوم مدولهای درونبرپوشا توسط قربانی و ودادی در سال 2009 ارائه شد که توسیعی از مفهوم حلقه pri میباشد.
حلقه R، حلقه ایدهآل راست اصلی یا به اختصار حلقه pri ، نامیده میشود هرگاه، هر ایدهآل راست آن اصلی باشد. توسیع این مفهوم در مدولها درونبرپوشایی نامیده شدهاست.
یک R- مدول راست M درونبرپوشا گفته میشود هرگاه به ازای هر زیرمدول غیرصفر N از M همریختی غیرصفرپوشایی از M به N موجود باشد. بنابر قضیه اول یکریختی و با توجه به این
نکته که یک مدول اصلی یکریخت با R/Iاست ، حلقه R یک حلقه pri است اگر و تنها اگر مدول RR درونبرپوشا باشد. دوگان این مطلب بهنام همدرونبرپوشایی توسط قربانی ارائه شدهاست. R – مدول M همدرونبرپوشا گفته میشود هرگاه به ازای هر زیرمدول سره N از M همریختی غیرصفر یک به یکی از M/N به M موجود باشد.
در این پایاننامه مفهوم همدرونبرپوشایی، قضایای مربوطه و دوگان آن تحقیق میشود که برگرفته از مرجع ]3[ میباشد.
1-2. تعاریف وقضایای مقدماتی
در سراسر این پایاننامه حلقهها شرکتپذیر و یکدار میباشند. (تمام مدولها مدول راست می باشند.) درابتدا یادآوری، سپس تعاریف اولیه و بعد قضایای مقدماتی به صورت نکته و لم بیان میشود.
یادآوری
فرضکنید R یک حلقه باشد.R – مدول M را ساده گویند اگر زیرمدول غیربدیهی نداشته باشد. مدول M نیمساده نامیده میشود اگر هر زیرمدولش یک جمعوند آن باشد.
زیرمدول L از M اساسی نامیده میشود و مینویسیم Lvess M هرگاه به ازای هر N £ M اگر L ∩ N = 0 ، آنگاه =0 N . بهطور معادل L vess M اگر و تنها اگر به ازای هر عنصر ناصفر xÎM ، rÎR موجود باشد بهطوریکه 0 ¹ xrÎ L .
زیرمدول K از M زاید نامیده میشود و مینویسیم K<< M ، هرگاه به ازای هر N £ M اگرK + N = M آنگاه = M N.
فرض کنید M یک R- مدول راست باشد، X زیرمجموعهای از M و Y هم زیرمجموعهای از R ، پوچساز راست X در R با rR (X) و پوچسازچپ Y در M با lM (Y) نمایش داده میشود و تعریف میکنیم :
rR (X) = { r Î R : X r = 0 } lM (Y) ={ m Î M : mY = 0 }
همچنین برای S- مدول چپ N ، rN (Z) وlS (W) بهطور مشابه برای هر Z Í S و هر
W Í N به صورت زیر تعریف میشود :
r N (Z) ={ n Î N : Z n = 0 } l S (W) = { s Î S : sW = 0 }
اگر X = {a}، آنگاه پوچساز راست آن با rR (a ) نشان داده میشود و داریم :
rR (a)= rR (X) و نیز lR (a)= lR (X).
با استفاده از قضیه 2-15 از مرجع [1] نتایج زیر را داریم :
اگر A و B دو زیرمجموعه R – مدول راست M باشند و AÍ B آنگاه rR (B) Í rR (A) . بوضوح Í lM (rR (A)) A و میتوان نتیجه گرفت (A))) Í rR (A) rR (lM (rR . از سوی دیگر با قرار دادن C= rR (A)درC Í lM (rR ©) (بهازای هرC Í R) داریم :
rR (A) Í rR(lM (rR (A)))پس (A))) Í rR (A) rR (lM (rR ؛
در نتیجه(A))) = rR (A) rR (lM (rR .
به طریق مشابه اگر I و J دو زیرمجموعه R باشند و I Í J ، آنگاه lM (J) Í lM (I) . بوضوح
I Í rR (lM (I)) و میتوان نتیجه گرفت : lM (rR (lM (I)))=lM (I) .
اگرM یک R -مدول و U یک کلاس از R – مدولها باشدTr (M ,U ) و Rej (M, U ) به صورت زیر تعریف میشوند که زیرمدولهایی از M میباشند.
Tr (M ,U )=å { Im f | f : ua → M , uaÎ U برای برخی }
Rej (M, U )=∩ {ker f | f : M → ua , uaÎU برای برخی }
اگر S مجموعه تمام R – مدولهای راست ساده باشد، به ازای هر R – مدول M،Soc (MR) بزرگترین زیرمدول نیمساده M است و با توجه به بخش 9 از مرجع [1] به صورت زیر تعریف میشود :
Soc(MR) = Tr (M ,S) = å {K | است M یک زیرمدول ساده از K }
= ∩ { L | L vess M }.
همچنین R – مدول M نیمساده است اگر و تنها اگر soc(MR) = MR .
ضمناً به سادگی دیده میشود R – مدول M نیمساده است اگر و تنها اگر زیرمدول اساسی غیر بدیهی نداشته باشد.
R – مدول M پروژکتیو نامیده میشود هرگاه به ازای هر نمودار از R- همریختیها و R- مدولها به صورت زیرکه سطر آن دقیق باشد ، R- همریختی→ A M موجود باشد بهطوریکه نمودار زیر جابجایی باشد.
1-2-1. R – مدول پروژکتیو M
یا بهطور معادل اگر هر دنباله دقیق کوتاه به صورت A→ B→ M → 0 0 → شکافته شود ، آنگاه M پروژکتیو است.
R – مدول M انژکتیو نامیده میشود هرگاه به ازای هر نمودار از R- همریختیها و R- مدولها به صورت زیرکه سطر آن دقیق باشد، R – همریختی→ M B موجود باشد بهطوریکه نمودار جابجایی باشد.
1-2-2. R – مدول انژکتیو M
همچنین R – مدول M انژکتیو است هرگاه به ازای هرایدهآل راست I از R ، هر همریختی
f : I→ M را بتوان از R به M گسترش داد. (لم بئر)
1-2-3. R – مدول انژکتیوM (لم بئر)
تعاریف و قضایای زیر برای حلقهها و مدولهای راست بیان میشود و بهطور مشابه برای مدولهای چپ نیز برقرار است.
تعریف 1-2-1. حلقه R، خود- انژکتیو راست نامیده میشود، هرگاه RR انژکتیو باشد.
تعریف 1-2-2. حلقه R، حلقه انژکتیو اصلی راست یا به اختصار P- انژکتیو راست نامیده میشود، هرگاه به ازای هر aÎR هر R – همریختی f :aR→ RR را بتوان به R– همریختی
:RR→ RR گسترش داد .
تعریف1-2-3 . مجموعه عناصر منفرد R- مدول راست M را با Z(MR ) نشان میدهیم و تعریف میکنیم :
Z(MR ) = {mÎM | rR (m) vess RR } £ M .
تعریف1-2-4 . R – مدولM، نامنفرد نامیده میشود هرگاه Z(MR ) = 0 و نیز منفرد نامیده میشود هرگاه Z(MR ) = M .
تعریف1-2-5 . زیرمدول N ازR – مدول M ، کاملاً پایا نامیده میشود هرگاه به ازای هر
ÎEnd (MR ) f داشته باشیم f(N) Í N .
تعریف1-2-6 . یک حلقه را حلقه دو راست(right duo)گویند، هرگاه هر ایدهآل راست آن
دو طرفه باشد. بهطور مشابه حلقه دو چپ تعریف میشود.
همچنین اگر R یک حلقه دو چپ باشد وyÎ R آنگاه yR Í Ry ، از آنجا که Ry دو طرفه است به ازای هر Î R r،yrÎ Ry و در نتیجه yR Í Ry .
تعریف1-2-7. عنصر aÎR ، منظم چپ نامیده میشود هرگاه= 0 lR (a). بهطور مشابه عنصرbÎR ، منظم راست است هرگاه= 0 rR (b) .
تعریف1-2-8 .حلقه R ، کاهشی است هرگاه عنصر پوچتوان غیرصفر نداشته باشد.
تعریف1-2-9. حلقه R ، برگشتپذیر (reversible)نامیده میشود هرگاه به ازای هر a,bÎ R اگر= 0 ab آنگاه ba = 0 .
تعریف1-2-10. ایدهآل سره P از حلقه R نیماول نامیده میشود هرگاه به ازای هرایدهآل IازR اگرI 2 Í P ، آنگاه Í P I .
تعریف1-2-11. حلقهR نیماول گفته میشود، هرگاه صفر یک ایدهآل نیماول باشد.
تعریف1-2-12. فرض کنید R یک حلقه باشد. رسته تمام R – مدولهای راست را با MR و رسته تمام R – مدولهای چپ را با RM نشان میدهند.
تعریف1-2-13. فرض کنید R یک حلقه و a یک درونریختی از R باشد ، حلقه R[x, a] حلقه چندجملهای اریب نامیده میشود هرگاه شاملتمام چند جملهایهای چپ با متغیر x به صورت xi باشد جاییکه ri ÎR ، بهطوریکه بهازای هر اسکالرrÎR ضرب با عمل
r= a®.x x تعریف شود.
تعریف1-2-14. R- مدولM را فشردهپذیر گویند هرگاه بهازای هر £ M Nیک تکریختی از
M بهN موجود باشد.
در زیر دو مفهوم تولید کردن و مولد ، و دوگان آن هم-تولید کردن و هم-مولد بیان میشود.
تعریف1-2-15. فرض کنیدU یک کلاس از R – مدولها باشد .گوییم مدول M توسط U ( به طور متناهی ) تولید میشود (U ، M را ( به طور متناهی ) تولید میکند) اگر یک مجموعه اندیسشده (متناهی) (Ua)aÎJ در U و همریختی پوشای ÅJ Ua → M → 0 موجود باشد.
اگر= {U} U ، آنگاه گوییم U ، M را تولید میکند هرگاه مجموعه اندیس J و همریختی پوشای M → f : U (J) موجود باشد.
نسخه قابل چاپ | ورود نوشته شده توسط نجفی زهرا در 1399/10/26 ساعت 06:44:00 ب.ظ . دنبال کردن نظرات این نوشته از طریق RSS 2.0. |