پایان نامه ارشد: مطالعه تجربی و شبیه سازی فرآیند خم­کاری لوله جدار نازک به روش هیدروفرمینگ


امروزه لوله­ های خمیده کاربرد بسیار گسترده­ای در صنایعی نظیر هواپیماسازی، خودرو، نفت و گاز، اسباب و اثاثیه منزل، سازه ­های مکانیکی و غیره جهت انتقال سیال، سازه بدنه و غیره دارد. قطعات لوله­ای از نسبت استحکام به وزن بالایی برخوردار هستند و به همین دلیل در صنایع به صورت وسیعی به کار گرفته می­شوند. در شکل (‏1‑1) چند نمونه از کاربردهای قطعات خم لوله نشان داده شده است.
در گذشته انجام عملیات خم­کاری لوله یک هنر تلقی می­شد و نوعا توسط افراد ماهر و با تجربه صورت می­گرفت. در چند دهه اخیر تحقیقات گسترده­ای در خم­کاری لوله­ها به منظور ایجاد دانش پایه در این زمینه صورت گرفته است. به کمک کارهای تجربی، تحلیل­های تئوری و شبیه­سازی عددی درک بهتری از نحوه تغییر شکل لوله در حین خم­کاری فراهم شده است.
روش­های مختلفی جهت خم­کاری لوله­ها وجود دارد. هر یک از این روش­ها با توجه به نوع و کیفیت خمی که می­توان تولید کرد دارای کاربردها و محدودیت­هایی می­باشند. انواع روش­های خم­کاری لوله شامل خم­کاری برشی، خم­کاری کششی دورانی، خم­کاری تحت فشار، خم­کاری کوبه­ای، خم­کاری فشاری، خم­کاری غلتکی و خم­کاری به روش هیدروفرمینگ می­باشند. انتخاب روش خم­کاری بستگی به کیفیت خم، تعداد تولید، جنس لوله، شعاع نسبی خم (R/D)، قطر نسبی لوله (D/t) و دقت مورد انتظار دارد که در آن ها D قطر خارجی، t ضخامت و R شعاع خط مرکزی خم می­باشد]2[. در موتور هواپیماها، قطعات لوله­ای با شعاع خم کوچک با استحکام بالا به صورت فراوان به کار گرفته می­شوند. شعاع خم این قطعات لوله­ای در برخی موارد در حدود قطر خارجی آن­ها می­باشد که در بسیاری از موارد تولید آن­ها با روش­های رایج خم­کاری لوله­ها مشکل است. در این موارد لازم است روش­های جدیدی جهت تولید خم با کیفیت مطلوب مورد استفاده قرار گیرند. یکی از این روش­ها، خم­کاری به روش هیدروفرمینگ است که در آن خم­کاری تحت فشار داخلی سیال انجام می­گیرد. این روش در مقایسه با سایر روش­های خم­کاری لوله­ها دارای مزایایی مانند دقت بالا، تولید خم با کیفیت خوب و کمترین تغییرات ضخامت دیواره، بهبود مقاومت و سختی، کاهش ضایعات و کاهش هزینه با توجه به کاهش نیروی کار، تجهیزات و مصرف انرژی می­باشد]3[.
2-1- تعریف ها و پارامترهای خم کاری
در شکل (‏1‑2) پارامترهای خم­کاری لوله نشان داده شده است. هر یک از این پارامترها را می­توان به صورت زیر تعریف نمود ]4[.
– سطح خمش: سطحی که از شعاع خط مرکزی لوله (شعاع خم) عبور می­کند و عمود بر جهت چرخش خم می­باشد.

 

مقالات و پایان نامه ارشد

 

– خط مرکزی لوله (CL): خط ممتدی که هر نقطه واقع در مرکز سطح مقطع لوله را به هم وصل می­کند.
– دیواره خارجی خم[1]: کمان/لبه بیرونی خم می­باشد.
– دیواره داخلی خم[2]: کمان/لبه داخلی خم می­باشد.
شعاع خط مرکزی (CLR): فاصله بین مرکز چرخش خم و خط مرکزی لوله می­باشد که شعاع خم نیز نامیده می­شود. در صنعت خم­کاری معمولا شعاع خم بر حسب ضریبی از قطر خارجی لوله (OD) و به صورت mD بیان می­شود.
– انحنای خم: عکس شعاع خط مرکزی را انحنای خم می­گویند.
– قطر لوله: هرگاه قطر لوله به تنهایی به کار می­رود منظور قطر خارجی می­باشد.
3-1- روش های خم کاری لوله
روش­های زیادی برای خم­کاری لوله وجود دارد. در این بخش در مورد برخی از روش­های خم­کاری لوله­ها بحث خواهد شد. هر یک از این روش­ ها دارای کاربردها و محدودیت­هایی از لحاظ نوع خم، حداکثر زاویه خمی که می­تواند ایجاد کند، هزینه­های تولید و کیفیت خم می­ باشد. در ادامه به روش­های مختلف خم­کاری اشاره شده است.
1-3-1- خم­کاری هیدروفرمینگ 
خم­کاری به روش هیدروفرمینگ از جمله روش­های خم­کاری است که اخیرا مورد توجه قرار گرفته است. از جمله مزیت­های این روش امکان تولید خم­های کوچک حتی کمتر از  قطر خارجی لوله، تولید خم با تغییرات ضخامت کم و تغییر سطح مقطع (بیضی شدن) ناچیز می­باشد. قطعات خم­کاری که در موتور هواپیماها و سفینه­های فضایی بکار می­روند باید هم فضای کمی اشغال کنند و هم از کیفیت و استحکام بالایی برخوردار باشند. برای اینکه این قطعات فضای کمی اشغال کنند لازم است که خم­کاری با شعاع کوچک انجام شود. برای دست­یابی به کیفیت و استحکام مناسب باید از یک روش خم­کاری مناسب استفاده کرد. با خم­کاری به روش هیدروفرمینگ می­توان خم­هایی که این ویژگی­ها را دارند تولید نمود]3[.
پروفیل خم مورد استفاده در قالب خم­کاری هیدروفرمینگ، پروفیل خمی مشابه با شکل نهایی خم مورد نظر است که در آن فشار سیال به سطح داخلی لوله اعمال می­شود و سبب می­شود که لوله بطور کامل شکل پروفیل خم قالب را به خود بگیرد. در شکل (‏1‑3) شماتیک این فرآیند مشاهده می­شود.
در این روش، ابتدا لوله داخل قالب قرار داده می­شود. سپس با اعمال سیال در محفظه لوله، فشار سیال سبب شکل گیری بهتر لوله در داخل قالب می­شود.
2-3-1- خمکاری فشاری
خم­کاری فشاری بیشتر برای تولید خم­های با شعاع کم در لوله­های جدار نازک استفاده می­شود. از جمله مزیت­های این روش امکان تولید خم­های کوچک در حدود قطر خارجی لوله، تولید خم با تغییرات ضخامت کم، تغییر سطح مقطع (بیضی شدن) کم و تجهیزات ارزان­تر در مقایسه با سایر روش­های خم­کاری لوله می­باشد.
قالب خم مورد استفاده در این روش خم­کاری دارای پروفیل خمی مشابه با شکل نهایی خم مورد نظر می­باشد. پس از خم­کاری شکل پروفیل خم در لوله ایجاد می­گردد. در داخل لوله از مندرل لاستیک مانند استفاده می­شود که تحت شرایط فشاری مشابه سیال رفتار می­کند. بین لوله و مندرل باید مقداری لقی در نظر گرفته شود تا در انتهای خم­کاری بتوان به راحتی آن را از داخل لوله خارج نمود. موادی مانند یورتان[1]، رزین اپوکسی ریخته­گری[2]، لاستیک طبیعی[3] و لاستیک مصنوعی[4] جهت استفاده به عنوان مندرل مناسب می­باشند. این مواد خاصیت الاستیکی بالایی دارند و بعد از خم­کاری و برداشتن فشار از روی آنها به شکل اولیه خود باز می­گردند و به راحتی می­توان آنها را از داخل لوله خارج نمود. فشار داخلی ایجاد شده در لوله باعث می­شود لوله در حین خم­کاری در تماس با سطح داخلی قالب باقی بماند و در نتیجه از بیضی شدن سطح مقطع لوله جلوگیری می­شود. علاوه بر این، تامین فشار لازم برای جلوگیری از چروکیدگی در شعاع داخلی خم ضروری می­باشد ]6[.
  در روش خم­کاری فشاری ابتدا مندرل لاستیکی در داخل لوله قرار داده می­شود. سپس مجموعه لوله و مندرل در داخل راهنمای لوله قرار گرفته و توسط سنبه جلویی به مندرل فشار وارد می­شود. این فشار تا پایان عملیات خم­کاری ثابت باقی می­ماند. فشار وارد شده به مندرل موجب افزایش قطر آن می­گردد و در نتیجه به سطح داخلی لوله فشار اعمال می­شود. در انتها لوله و مندرل توسط سنبه به داخل قالب رانده می­شوند و در نتیجه لوله شکل پروفیل را به خود می­گیرد. بعد از خم­کاری، فشار از روی مندرل برداشته می­شود و دو کفه قالب باز شده و لوله و مندرل از داخل قالب خارج می­شوند.
پارامترهای تاثیر گذار بر شکل نهایی لوله شامل فشار داخلی، شرایط اصطکاکی بین لوله و قالب و نیز بین لوله و مندرل، شکل اولیه لوله، ابعاد و خواص مکانیکی لوله، سرعت سنبه و غیره می­باشد. انتخاب مناسب هر یک از این پارامترها در کیفیت خم تولید شده موثر خواهد بود. در شکل (‏1‑4) شماتیک این فرآیند مشاهده می­شود ]7[.
استفاده از روش­های خم­کاری فشاری در مواردی که تعداد تولید پایین باشد بسیار سودمند می­باشد زیرا با هزینه کم می­توان تجهیزات خم­کاری آن را تولید کرد و علاوه بر این دقت قطعات خم­کاری در این روش بالا می­باشد. بنابراین می­توان نتیجه گرفت برای تولید خم (بویژه خم­های با شعاع کوچک) در تعداد کم و با دقت، مناسب­ترین گزینه روش خم­کاری فشاری می­باشد.
روش خم­کاری فشاری برای خم­های با زاویه بین 15 تا 120 درجه، شعاع­های خم از 20 تا 160 میلی­متر و ضخامت لوله در حدود 5/0 تا 2 میلی­متر مناسب می­باشد ]8[.
3-3-1- خم­کاری کششی دورانی
خم­کاری کششی دورانی یکی از روش­های بسیار رایج خم­کاری لوله و پروفیل می­باشد که روی ماشین­های خم­کاری کششی دورانی انجام می­شود. این ماشین­ها با نیروی هیدرولیکی، پنوماتیکی یا مکانیکی الکتریکی کار می­کنند و ممکن است به صورت دستی یا ماشین کنترل عددی[1] کنترل شوند. اجزای اصلی قالب شامل قالب خم[2]، قالب فشاری[3]، قالب نگهدارنده[4]، قالب جاروب کن[5] و مندرل[6] می­باشند. تمامی این اجزا در شکل (1-5) نشان داده شده است.
در روش خم­کاری کششی دورانی، لوله از یک انتها توسط گیره به قالب دورانی مقید می­شود. سپس توسط یک بازویی، مندرل به درون لوله هدایت می­شود. با چرخش قالب دورانی، لوله روی قالب فشاری کشیده شده و به داخل قالب خم هدایت می­شود. چرخش قالب دورانی به اندازه­ای است که زاویه خم مورد نظر در لوله ایجاد می­شود. قالب فشاری می­تواند ثابت یا متحرک باشد و در صورت متحرک بودن توسط یک جک به سمت جلو  یا به سمت عقب حرکت می­کند. سطوح گیره را به صورت آج­دار می­سازند تا بیشترین اصطکاک را به منظور محکم گرفتن لوله فراهم آورد. سطوح قالب فشاری، مندرل و قالب جاروب کن باید کاملا پرداخت باشند چون موقع خمکاری در تماس با سطح لوله حرکت می­کنند. شکل (‏1‑5) شماتیک روش خم­کاری کششی را نشان می دهد.
در روش خم­کاری کششی دورانی، قالب فشاری با ایجاد فشار به لوله در شعاع بیرونی خم، از نازک شدن بیش از حد لوله جلوگیری می­کند. این عمل، در خم­کاری با زاویه خم بزرگ و شعاع خم کوچک بسیار مفید خواهد بود. مندرل همراه با قالب جاروب کن برای جلوگیری از چین خوردگی و خراب شدن سطح مقطع لوله ممکن استفاده شود ولی استفاده از مندرل در حد امکان باید پرهیز شود زیرا هزینه های تولید را افزایش می­دهد.
در این روش امکان کنترل جریان ماده وجود دارد. بنابراین می­توان از آن برای خم­کاری لوله­های جدار نازک و شعاع خم های کوچک استفاده نمود. برای ضخامت­های کمتر از 4/0 میلی­متر نباید از این روش استفاده نمود زیرا ابزار بندی در این حالت بسیار پیچیده خواهد بود ]4[.
[1] Computer Numerical control
[2] Bend Die
[3] Pressur Die
[4] Clamp Die
[5] Wiper Die  
[6] Mandrel  
[1] Urethane Rubber
[2] Cast Epoxy Resin
[3] Natural Rubber
[4] Synthetic Rubber
[1] Extrados
[2] Interados
[1] Shear Bending  
[2] Rotary Draw Bending
[3] Pressure Bending
[4] Ram Bending
[5] Push Bending
[6] Roll Bending
[7] Hydro Bending

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی
This is a captcha-picture. It is used to prevent mass-access by robots.