پایان نامه : برآورد میانگین درنمونه گیری مضاعف برای طبقه بندی با استفاده ازاطلاعات کمکی چند متغیره

 

یکی از توانایی های علم آمار تحلیل موضوعاتی با اطلاعات عددی انبوه می باشد. در واقع در هر بررسی آماری مراحل جمع آوری، پاک سازی، تلخیص و تحلیل داده ها و نتیجه گیری مورد توجه قرار می گیرد. مرحله ی جمع آوری داده ها به عنوان زیر بنای بررسی های آماری دارای اهمیت ویژه ای می باشد، زیرا در صورت وجود نقصی در این مرحله از ارزش و اعتبار کل پژوهش کاسته می شود. یک جامعه متناهی در نظر بگیرید. جمع آوری اطلاعات عددی از این جامعه با استفاده از دو روش سرشماری و نمونه گیری امکان پذیر است، در صورتی که در جوامع نامتناهی سرشماری امکان پذیر نمی باشد و باید تنها از روش نمونه گیری استفاده کرد. هدف از انواع روش های نمونه گیری، تهیه ی اطلاعاتی از جامعه با مطالعه ی بخشی از آن به نام نمونه است. در واقع نمونه گیری، فرایند انتخاب واحدها از جامعه می باشد به طوری که به کمک آن ها بتوان از جامعه کسب اطلاع کرد. بنابراین یکی از مسائل مهم در نمونه گیری، تطابق نمونه با کل جامعه است.

 

در حالت کلی برای نمونه گیری، دو روش نمونه گیری احتمالی و غیراحتمالی معرفی
می گردد. در نمونه گیری احتمالی که اولین بار توسط دمینگ ]7[ در سال 1950 مطرح شده است، هر واحد نمونه با احتمالی مشخص از جامعه استخراج می شود. کاربرد گسترده ی این روش امروزه به گونه ای است که این روش جایگزین نمونه گیری غیر احتمالی شده است.همچنین در بسیاری از نمونه گیری ها، در حین جمع آوری اطلاعات مربوط به متغیر مورد مطالعه و یا قبل از آن، ممکن است اطلاعاتی درباره متغیر یا متغیرهای دیگری که با متغیر مورد مطالعه همبستگی دارند موجود باشد که به این نوع اطلاعات، اطلاعات کمکی گفته می شود. از اطلاعات کمکی در مرحله ی برآوردیابی و در طرح نمونه گیری می توان استفاده کرد.

راه دست یابی به اطلاعات کمکی مفید از منابع متعدد می باشد و اغلب این اطلاعات در جوامع متناهی باعث افزایش دقت برآوردگرها می

 

پایان نامه

 شود. الکلین ]18[ در سال 1958، رائو ]21[ در سال 1967، سینگ ]37[ در سال 1967، جان ]13[ در سال 1969، سریواستاوا ]40[ در سال 1971 و ویشواکارما و همکاران ]49[ در سال 2012 در مطالعات خود از اطلاعات کمکی به طور گسترده استفاده کرده اند.

 

در این فصل، در بخش (1-2) به بیان تعاریف و مفاهیم پایه ای در نمونه گیری که شامل جامعه متناهی، نمونه، طرح نمونه گیری و… است، پرداخته و سپس در بخش (1-3) انواع
طرح های نمونه گیری را تعریف می کنیم.

 

 

 

1-2  تعاریف و مفاهیم پایه ای

 

در مباحث نمونه گیری داشتن تعاریف دقیق و درست از مفاهیمی هم چون جامعه، نمونه، طرح نمونه گیری و… از ضروری می باشد. از این رو در این فصل به بیان تعاریف پایه ای و برخی نماد ها که در فصل های بعدی رساله مورد استفاده قرار خواهند گرفت، می پردازیم. نماد ها به صورتی در نظر گرفته شده که در اغلب متون نمونه گیری مورد استفاده قرار گرفته است. عمده مطالب این بخش مبتنی بر مراجع کاکران ]4[ و عمیدی ]52[ است.

 

جامعه ی متناهی : یک جامعه ی متناهی از مجموعه ای مشتمل بر تعداد متناهی عناصر متمایز تشکیل شده است. مقدار ، اندازه ی جامعه نامیده می شود. یک جامعه ی متناهی U را به صورت زیر نمایش می دهیم:

 

   

طرح نمونه‌گیری : با در نظر گرفتن یك طرح نمونه‌ای معین می‌توان احتمال انتخاب یك نمونه دلخواه مانند s را بیان نمود. این احتمال را با نماد p(s) نمایش خواهیم داد. حال با فرض این كه تابع p(.) به‌گونه‌ای وجود دارد كه p(s) احتمال انتخاب s را تحت فرض استفاده از طرح مورد نظر به ‌دست دهد، تابع p(.) طرح نمونه‌گیری نامیده می‌شود. هر نمونه s بر اساس هر طرح نمونه‌گیری مفروض p(.) را می‌توان به عنوان مشاهده‌ای از متغیر تصادفی مجموعه- مقدار S كه توزیع احتمال آن بوسیله تابع p(.) بیان می‌شود، مورد توجه قرار داد. اگر  را معرف تمام نمونه‌های ممكن s در نظر بگیریم، در این صورت با در نظر گرفتن زیر مجموعه‌های تهی و U،  مجموعه‌ای شامل N2 زیر مجموعه با اندازه‌های متفاوت از U خواهد بود. لذا برای هر  داریم:

 

از آنجا كه  یك توزیع احتمال بر روی  است، داریم:

 

  • ، برای هر

 

 

نمونه  : عناصری از جامعه كه مشخصات آن‌ها‌ اندازه‌گیری می‌شود، تشكیل یك نمونه می‌دهند. در واقع یك نمونه، زیرمجموعه‌ای از جامعة U است كه طبق برنامة خاصی به ‌دست می‌آید. این زیرمجموعه به طور معمول با s نمایش داده شده و  تعداد عناصر نمونه s است. در بسیاری از مواقع نمونه‌هایی را در نظر می‌گیریم كه با استفاده از یك طرح نمونه‌گیری احتمالی تحقق می‌یابند. دو تعریف برای اصطلاح نمونه وجود دارد كه در اكثر مواقع مورد استفاده قرار می‌گیرند:

[1] Probability Sampling

[2] Deming, W.E.

[3]  Olkin

[4]  Rao and Madholkar

[5]  Singh

[6]  John

[7]  Srivastava

[8]  Vishwakarma et. al.

[9] Finite Population

[10] Sampling Design

[11] Sample

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی

درخواست بد!

پارامتر های درخواست شما نامعتبر است.

اگر این خطایی که شما دریافت کردید به وسیله کلیک کردن روی یک لینک در کنار این سایت به وجود آمده، لطفا آن را به عنوان یک لینک بد به مدیر گزارش نمایید.

برگشت به صفحه اول

Enable debugging to get additional information about this error.