پایان نامه ارشد مهندسی نساجی: تکمیل منسوج با چند لایه مرکب نانو لوله های کربنی/ پلیمر رسانا


در این فصل به پیشینه و کاربرد کامپوزیت ها، کامپوزیت نانولوله ­های کربنی و پلیمر هادی و استفاده از آن­ها در سلول­های خورشیدی به عنوان الکترود مقابل، نقش، اهمیت و مشکلات الکترود مقابل پرداخته شده است.
1-1- تعریف کامپوزیت
ترکیب دو یا چند ماده با یکدیگر به طوری که به صورت شیمیائی مجزا و غیر محلول در یکدیگر باشند و بازده و خواص سازه­ای این ترکیب نسبت به هریک از اجزاء تشکیل دهنده آن به تنهایی­، در موقعیت برتری قرار بگیرد را کامپوزیت می­نامند. به عبارت دیگر کامپوزیت به دسته ای از مواد اطلاق می­شود که آمیزه ای از مواد مختلف و متفاوت در فرم و ترکیب باشند و اجزاء تشکیل دهنده آن­ها هویت خود را حفظ کرده، در یکدیگر حل نشده، با هم ممزوج نمی­شوند [7].
2-1- تاریخچه
قدیمی ترین مثال از کامپوزیت ها مربوط به افزودن کاه به گل جهت تقویت گل و ساخت آجری مقاوم جهت استفاده در بناها بوده است. قدمت این کار به 4000 سال قبل از میلاد مسیح باز می­گردد. در این مورد کاه نقش تقویت کننده و گل نقش زمینه یا ماتریس را دارد.

 

پایان نامه

 ارگ بم که شاهکار معماری ایرانیان بوده است. نمونه بارزی از استفاده از تکنولوژی کامپوزیت­ها در قرون گذشته بوده است. مثال دیگر تقویت بتن توسط میله­ های فولادی می­باشد. که قدمت آن به سال ۱۸۰۰ میلادی باز می­گردد. در بتن مسلح یا تقویت شده میله های فلزی استحکام کششی لازم را در بتن ایجاد می­نمایند چرا که بتن یک ماده ترد می­باشد و مقاومت اندکی در برابر بارهای کششی دارد. بدین ترتیب بتن وظیفه تحمل بارهای فشاری و میله های فولادی وظیفه تحمل بارهای کششی را بر عهده دارند [7].

3-1- تاریخچه مواد پلیمری تقویت شده با الیاف
تاریخچه مواد پلیمری تقویت شده با الیاف به سال­های 1940 در صنایع دفاعی و به خصوص کاربردهای هوا-فضا بر می­گردد. در این صنایع داشتن عملکرد بالا از مقرون به صرفه بودن اهمیت بیش­تری دارد. برای ساخت و طراحی مواد با عملکرد بالا از الیافی که نسبت استحکام به وزن بالایی داشتند استفاده گردید. برای مثال در سال 1945 بیش از 7 میلیون پوند الیاف شیشه به طور خاص برای صنایع نظامی­، مورد استفاده قرار گرفته است. علاوه بر هوافضا، از کامپوزیت منسوجات در زمینه­های مختلفی از جمله ورزشی(تولید لباس­های ورزشی محافظ مثل کلاه و …)، پزشکی، تولید و ذخیره­سازی انرژی، الکترونیک، فناوری اطلاعات، خودرو سازی(در ساخت بدنه و سایر بخش­های اتومبیل مثل چرخ­ها) و ساختمان سازی(برای ساخت دیوارهایی با استحکام بالا و ضخامت کم و درنتیجه هزینه تولید پایین) مورد استفاده قرار می­گیرد[7].
4-1- کامپوزیت نانولوله ­های کربنی و پلیمر رسانا
تکنولوژی پلیمریزاسیون شیمیایی انیلین و پلی­پیرول در حدود یک قرن است که شناخته شده است. با کشف پلیمرهای رسانا در سال 1963، تحقیقات گسترده­ای در زمینه­­ی پلیمرهای رسانا توسط مک دیارمید (در سال 1976) با هدف کاربرد آن­ها در سنسورها، ذخیره­ی انرژی و خازن­ها و ابزارهای دیگر انجام شد[8].
پلیمرهای رسانای تهیه شده  به روش پلیمریزاسیون شیمیایی رسانایی بالا، ثبات خوب و انحلال­پذیری ناچیزی در محلول­های آبی دارند. سنتز شیمیایی پلیمرهای رسانا ساده­ترین روش تهیه پلیمرهاست که در این روش، مونومرها با استفاده از یک ماده­ی اکسیدکننده پلیمریزه می­شوند. به عنوان مثال انیلین به صورت شیمیایی توسط اکسیدکننده­های متفاوتی از جمله آمونیوم پرسولفات، پتاسیم دی­کرومات، آهن( ) کلراید و به طور مشابه پلی­پیرول هم با استفاده از اکسیدکننده­های متفاوتی از جمله نقره ( ) نیترات ، آهن( ) کلراید، آهن ( ) نیترات و مس( ) نیترات می­تواند تهیه شود [8].
تیوفن و مشتقاتش هم می­تواند به صورت شیمیایی در محیط­های آلی تهیه شوند. اگرچه به علت حلالیت خوب مونومرها در محلول­های آبی، سنتز شیمیایی پلی­انیلین و پلی­پیرول در مقایسه با مشتقات تیوفن، مقرون به صرفه­تر و سازگار با محیط­زیست است[8].
نانولوله­های کربنی به دلیل داشتن ساختار منحصربفرد، سطح مخصوص زیاد و پایداری گرمایی و الکتریکی بالا بسیار مورد توجه قرار گرفته­اند. هنگامی که نانولوله­های کربنی در داخل شبکه­های پلیمری قرار می­گیرند می­توانند هدایت الکتریکی و خواص مکانیکی آن­ها را بهبود ببخشند. پلیمر رسانا نوعی از پلیمرها با پیوندهای π و نانولوله­های کربنی هم پیوندهای π مزدوج دارند. که می توان نانولوله های کربنی را به نوعی پلیمر که تنها از کربن ساخته شده در نظرگرفت. هر اتم کربن نانولوله­ی کربنی یک اوربیتال P اضافی دارد و الکترون ها در اوربیتال P اضافی ، پیوندهای π غیر مستقر زیادی را به وجود می آورند. این الکترون های π غیرمستقر[1] می توانند به الکترون های π پلیمررسانا به صورت پیوندهای غیرکووالانسی π – π متصل شوند. بنابراین پیوند پلیمررسانا با دیواره های جانبی نانولوله ی کربنی به شکل پیوندهای غیرکووالانسی π – π و کامپوزیت پلیمررسانا-نانولوله با ساختار هسته-پوسته می تواند فراهم شود[9].
در تحقیقات گذشته، پلیمریزاسیون شیمیایی پلیمر رسانا و مشتقات آن بر روی مواد مختلف  مثل شیشه، پلیمر، سیلیکا، اکسیدهای فلزی، الیاف و منسوجات انجام شده است. درنتیجه نشان داده شد که همه­ی مواد می­توانند با استفاده از پلیمرهای رسانا و کامپوزیت جدیدشان پوشش­دهی شده و در زمینه­های مختلفی مورد استفاده قرار گیرند. تلاش­های زیادی در جهت بهبود خواص الکتروشیمیایی و مکانیکی پلیمرهای رسانای سنتز شده انجام شد. برای این منظور پوشش­دهی مواد کربنی مختلف با پلیمرهای رسانا انجام شد. مواد کربنی مختلف ازجمله کربن سیاه، کربن فعال، الیاف کربن، نانولوله­های کربنی تک دیواره و چند دیواره، قبل از شروع پلیمریزاسیون به منظور تشکیل سوسپانسیون در داخل محلول دیسپرس شدند. سپس پلیمریزاسیون در سطح این مواد کربنی اتفاق افتاد[8].
از آنجایی که نانولوله­های کربنی قابلیت دیسپرس شدن کمی در آب دارند، برای تهیه دیسپرسیون بهتر نانولوله­ها در محلول­های آبی، قبل و در حین پلیمریزاسیون شیمیایی تحت امواج فراصوت(اولتراسونیک) قرار گرفتند. درنتیجه مطالعاتی در راستای تاثیر امواج فراصوت بر محصول پلیمریزاسیون انجام شد [10].
[1] delocalized π electrons

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی

درخواست بد!

پارامتر های درخواست شما نامعتبر است.

اگر این خطایی که شما دریافت کردید به وسیله کلیک کردن روی یک لینک در کنار این سایت به وجود آمده، لطفا آن را به عنوان یک لینک بد به مدیر گزارش نمایید.

برگشت به صفحه اول

Enable debugging to get additional information about this error.