دانلود پایان نامه ارشد :مطالعه آزمایشگاهی پدیده ی سایش مایع حاوی شن در خطوط لوله

.. 45

 

3-2-1- دسته بندی مدل های موجود. 47

بر کارهای گذشته.. 48

 

3-4-1- مدل فینی.. 50

3-4-2-  مدل هاسر – ورنولد.. 51

3-4-3- مدل سالاما- ونکاتش…. 52

3-4-4- مدل سالاما 52

3-4-5- مدل مرکز مطالعات سایش و خوردگی دانشگاه تولسا 55

3-4-6- مدل شیرازی و همکاران.. 55

3-4-7- مدل فیزیکی.. 56

 

 

 

 

4-1-1- تجهیزات اصلی.. 58

4-1-2- تجهیزات جانبی.. 59

4-1-3- ذرات شن و ماسه. 63

4-1-4- اندازه گیری  وزن.. 63

 

 

4-3-1-  متغیرهای مورد مطالعه در آزمایش…. 67

 

 

پایان نامه

 

 

 

 

 

 

 

 

5-4-1- بررسی سرعت سایش سیال فاقد شن.. 73

5-4-2- بررسی تأثیر سرعت سیال حاوی ذرات شن.. 75

5-4-3- بررسی مکان های مختلف در خط لوله. 77

5-4-4- بررسی اندازه­ی ذرات شن.. 78

5-4-5- بررسی تأثیر غلظت شن.. 79

5-4-6- تأثیر سختی و دانسیته کوپن.. 80

 

5-5-1- میکروسکوپ الکترونی.. 84

5-5-2-آنالیز کوپن ها با میکروسکوپ الکترونی.. 85

 

5-6-1- الگوریتم ژنتیک…. 92

5-6-2- روش تفاضل تکاملی (DE). 94

5-6-3- جزئیات پیاده سازی الگوریتم ژنتیک برای مدل سازی.. 94

5-6-4- نتایج مدل سازی.. 96

 

 

 

 

 

 

–  اهمیت سایش و خوردگی در صنعت

پدیده­های خوردگی و سایش به عنوان یکی از آسیب­ها و چالش­های مهم در صنایع نفت، گاز و پتروشیمی به حساب می­آیند. پدیده­ی خوردگی طبق تعریف، واكنش شیمیایی یا الكتروشیمیایی بین یك ماده، معمولأ یك فلز و محیط اطراف آن می‌باشد كه به تغییر خواص ماده منجر خواهد شد. فرایند خوردگی در صنعت، آثار زیان بار اقتصادی عظیمی را موجب می­شود و برای کاهش آن کارهای زیادی می­توان انجام داد. برخی خسارت­های ناشی از خوردگی عبارتند از: ظاهر نامطلوب (مثلأ خوردگی رنگ خودرو)، مخارج تعمیرات و نگهداری و بهره برداری، تعطیلی کارخانه، آلوده شدن محصولات، نشت یا از بین رفتن محصولات با ارزش مثل مواد هیدروکربنی و یا نشت مخازن حاوی اورانیوم و … با توجه به اینكه از لحاظ ترمودینامیكی مواد اكسید شده نسبت به مواد در حالت معمولی در سطح پایین‌تری از انرژی قرار دارند، بنابراین تمایل رسیدن به سطح انرژی پایین‌تر سبب اكسید (خورده) شدن فلز می‌گردد. خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش می‌‌رود که به حالت پایدار برسد.

پدیده­ی خوردگی در تمامی دسته‌های اصلی مواد، شامل فلزات، سرامیك­ها، پلیمرها و كامپوزیت­ها اتفاق می­افتد، اما وقوع آن در فلزات آنقدر شایع و فراگیر بوده و اثرات مخربی بجای می‌گذارد كه هرگاه صحبت از خوردگی به میان می­آید، ناخودآگاه خوردگی یك فلز به ذهن متبادر می‌شود.

سایش، به فرایند جدا شدن ماده از سطح فلز در اثر واکنش مکانیکی گویند. مانند ضربه­ی ذرات جامد همراه با گاز و مایع، یا در اثر برخورد قطرات مایع به دیواره داخلی مجرای عبوری سیال. سایش ناشی از خطوط لوله حاوی دوغاب جهت انتقال مواد خام جامد نظیر سنگ آهن، ذغال­سنگ و پتاس یک مشکل بزرگ در صنایع معدنی است. سایش خطوط لوله جهت انتقال دانه­های خوراکی و ذرت به عنوان جایگزین حمل و نقل با تسمه و نقاله، از موضوعات مورد بررسی در صنعت کشاورزی است. مواردی در صنعت که پدیده­ی سایش ملموس­تر می­باشد، عبارتند از: توربین­های گازی، کمپرسور­ها و پمپ­ها، نازل­ها، لوله و تیوب­های انتقال، پره­های هلیکوپتر و هواپیماها، موتور وسایل حمل و نقل و …[1]

1-2- سایش و خوردگی در صنایع نفت و گاز

سایش خطوط لوله و تجهیزات مورد استفاده جهت انتقال سیالات حاوی ذرات جامد یک مشکل اساسی در بسیاری از صنایع از جمله صنعت نفت و گاز می­باشد. سایش برای مدت زمان طولانی بعنوان یک منبع ایجاد مشکل در سیستم­های تولید و بهره­‌برداری هیدروکربن­ها شناخته شده است. بسیاری از خرابی­های خطرناک مربوط به زانویی­ها در سکوهای بهره‌­برداری، واحد­های حفاری و دیگر تأسیسات زیردریایی در دهه­­های قبل در نتیجه سایش بوده است. این مشکلات و خرابی­ها، هم شامل هزینه­ی تعویض بخش­های فرسوده شده و هم مشکلات محیط زیستی و مسائل ایمنی را به دنبال دارد. زمانیکه نفت و گاز از مخازن دارای مقاومت نسبتأ پایین تولید می­شود (کمتر از 2000 psi) با کاهش فشار مخزن، ذرات شن می­توانند از سنگ مخزن جدا شده و تعدادی از ذرات همراه با سیالات تولید شوند. این ذرات شن می­توانند سبب سایش خطوط لوله و تجهیزات شده و در نتیجه منجر به توقف تولید شوند، و از این­رو ضررهای اقتصادی قابل ملاحظه­ای متوجه تولیدکنندگان نفت و گاز شود [2و7].

سایش علاوه بر اینکه موجب خرابی تجهیزات و افزایش هزینه های برآورد شده به علت خرید و جابجایی تجهیزات می­شود، می­تواند باعث آلودگی محیط و یا آتش­سوزی به دلیل سوراخ و پاره شدن مجرای عبور مواد هیدروکربنی شود. میزان خرابی­ها و از بین رفتن تجهیزات دریایی خیلی بیشتر از تجهیزات سطحی و زمینی است. به دلیل نیاز جهان به انرژی (که بیشتر از سوخت­های فسیلی تأمین می­شود) باید تولید هرچه بیشتر نفت و گاز (حداکثر ظرفیت تولید) توسط شرکت­های مربوطه مد نظر قرار گیرد. اما برای رسیدن به تولید بیشتر، مشکلات زیادی از جمله سایش به وجود می­آید. وقتی سرعت استخراج از چاه زیاد باشد و ذرات ریز شن و ماسه و حتی خاک در سیستم وجود داشته باشد، سایش مخرب­تر خواهد بود. کاهش دبی تولیدی چاه به عنوان راهکاری جهت کاهش سایش، مناسب به نظر نمی­رسد. عمده­ی مخازن زیر زمینی شامل نفت و گاز و آب هستند. عملیات بهره برداری ممکن است به صورت تک فازی باشد و هم می­تواند چند فازی باشد. میزان سایش در جریان­های چند فازی در شرایط مشابه ظرفیت تولید، به مراتب بیشتر از جریان­های تک فازی است [3].

تعمیر و جایگزین کردن قطعات و تجهیزات خراب شده سر چاهی و سطحی، به مراتب آسان­تر و کم هزینه­تر از تجهیزات درون چاهی و زیر­زمینی است. تجهیزات سر چاه باید طوری طراحی شوند تا در طول مدت بهره­برداری (بعضأ 50 سال) تحمل و مقاومت کافی را داشته باشند. سایز بندی خطوط لوله، آنالیز صدمات و خرابی­ها، میزان بهینه بهره برداری و … از مواردی هستند که قبل از آن­ها باید میزان و نرخ سایش مشخص شده باشد. پدیده­های سایش و خوردگی به علت محیط مساعد، و حرکت و جنبشی که در هر سیستم است، همیشه و در همه جا وجود دارند. نمی­توان فرایندی را یافت که از این دو پدیده در امان باشد. حتی در سرعت­های بسیار کم و غلظت ناچیز ذرات جامد همراه با سیال، سایش وجود دارد. باید راهکاری ابداع کرد که نرخ این سایش و خوردگی را به حداقل برساند [4].

مواد هیدروکربنی خروجی از چاه­ها با مخلوط پیچیده­ی چند فازی همراه است. که ممکن است شامل موارد زیر باشد [24]:

  • هیدروکربن­های مایع: نفت و میعانات گازی
  • هیدروکربن­های جامد: واکس و هیدرات و غیره
  • هیدروکربن­های گازی: گاز طبیعی
  • گازهای دیگر: هیدروژن سولفید، کربن دی اکسید، نیتروژن و غیره
  • آب همراه نمک
  • شن و دیگر ذرات

سایش ذرات که به ذرات شن و ماسه وابسته است، مهمترین عامل سایش در سیستم­های تولیدی هیدروکربن­ها بشمار می­رود، به این دلیل که حضور مقدار کمی ذرات شن در جریان تولید موجب سایش و خوردگی سایشی قابل ملاحظه­ای می­شود. سایش با شن و ماسه می­تواند موجب از بین رفتن پوشش­های جلوگیری از خوردگی شده و به تشدید خوردگی سایشی منجر شود. با این وجود دیگر مکانیسم­های سایشی می­توانند در شرایط عملیاتی خاص خسارات جبران ناپذیری به سیستم تولید وارد کنند. در بیشتر موارد شناسایی سایش به راحتی ممکن نیست و این مورد مدیریت سایش را با مشکلات فراوانی مواجه ساخته است.

عوامل مؤثر بر سایش عبارتند از: سرعت جریان، رژیم جریان، تعداد فاز­های جریان، میزان و یا غلظت فاز جامد در جریان (غلظت دانه های شن معلق در فاز مایع یا گاز)، اندازه­ی ذرات جامد، اندازه­ی قطرات مایع معلق در گاز، میزان تیزی دانه­های شن و ماسه، زاویه­ی برخورد ذرات با دیواره­ی تجهیزات، ژئومتری و هندسه مجرای عبوری جریان، میزان سختی ذرات جامد، میزان سختی قطعات و تجهیزات و … [5].

دانلود پایان نامه ارشد : مطالعه تاثیر گنبد نمکی کرسیا داراب بر منابع آبی مجاور

امروزه استفاده از آب­های زیرزمینی در نقاط مختلف دنیا به خصوص در کشور ما به دلیل کم بودن ذخائر سطحی توسعه­ی زیادی یافته­است و برای مصارف مختلف کشاورزی، صنعتی، شرب و غیره مورد استفاده قرار میگیرد، به همین دلیل لازم است که منابع آب زیرزمینی در هر ناحیه به دقت مورد مطالعه و بررسی کمی و کیفی قرارگیرند تا بتوان از آن­ها استفاده­ی بهینه را به عمل آورد (سنگدهی و همکاران 1387) عواملی چون بهره برداری نادرست از منابع آب ز یرزمینی ، وجودعوامل طبیعی همچون گنبدهای نمکی و سازندهای زمین شناسی آلاینده، هم گاها موجب کاهش کیفیت آب چاه­ها وسفره­های زیرزمینی می­شوند(زمردیان،1383) گنبدهای نمکی می­توانند به صورت­های مختلف منابع آب سطحی و زیرزمینی راآلوده نمایند .آلوده کنندگی گنبدهای نمکی درحد حجم­ها و دبی­های بسیار زیاد می­باشد. در مناطق خشک و نیمه خشکی مانند ایران که منابع آب از اهمیت زیادی برخوردار هستند بررسی شدت و نحوه آلودگی توسط گنبد‌های نمکی کمک زیادی در مدیریت کیفی این منابع خواهد نمود. نظر به­اینکه تعداد گنبد‌های نمکی در ایران زیاد است، ارائه راهکار مناسب برای تعیین مقادیر و نحوه آلودگی منابع آب توسط گنبد‌های­ نمکی راهکارهای مناسبی را برای سایر نقاط ارائه خواهد داد. احمدزاده و همکاران 115 گنبد نمکی را در جنوب ایران نام برده­اند که 101 گنبد محدوده بین بندرعباس- سروستان و 14 گنبد در جنوب کازرون قرار دارند. با توجه به نوپا بودن مطالعات صورت گرفته در زمینه گنبدهای نمکی در ایران بسیاری از مطالعات اولیه توسط زمین شناسان غیر ایرانی و در زمینه تکتونیک نمک انجام پذیرفته­است و پس از آن با گسترش مطالعات صورت گرفته، بررسی­های مربوط به هیدروژئولوژی گنبدهای نمکی نیز آغاز گردید.

1-1- سنگ نمک

سنگ نمک یا هالیت با ترکیب NaCl در زیر سطح به شکل لایه ای (salt bed) و بر روی زمین به شکل dome، sill، dike و دیاپیر (diapir) وجود دارد. بسته به تاریخ رسوبگذاری،نهشته­های هالیت ممکن است با دیگر نمک­های کلریدی همچون کارنالیت (KMgCl3,6H2O) یا سیلویت (KCl)، سولفات­هاهمچون پولی هالیت (K2Ca2Mg[SO4]4H2O)،انیدریت (CaSO4)،ژیپس (CaSO4,2H2O) یا باکربنات­ها همچون دولومیت (CaMg(CO3)2)  یا کلسیت(CaCO3) همراه باشند. از مهمترین خواص نمک می­توان به چگالی کم آن که برابر با kg/m3 165/2 می باشد و انحلال پذیری بالای آن که برابر با g/l360 می باشد نام برد. نمک در اعماق زیاد نفوذ ناپذیر می باشد. از دیگر خواص مهم نمک شکل پذیری آن است که به صورت Halokinesis، plastic creepin و deformation under pressure تغییر شکل میدهد.

 1 – 2 – انحلال نمک

در بسیاری از حوضه­های رسوبی در جهان لایه­های ضخیمی از سنگ نمک وجود دارد و در بعضی موارد، نمک تغییر شکل داده و به صورت دیاپیرهای نمکی و یا گنبدهای نمکی رخنمون دارند. نمک با توجه به حلالیت ساده­ی آن تحت تاثیر بارش های جوی قرار گرفته و به راحتی انحلال می­یابد. اما در بعضی موارد با وجود قابلیت حلالیت زیاد، این نهشته ها برای چندین هزار سال پایدار بوده و ممکن است یا انحلالی در آن­ها رخ نداده و یا این که پیشرفت انحلال بسیار کند بوده باشد، که این امر بیانگر عدم تماس آن­ها با چرخه­ی آب­های شیرین می­باشد.

 

پایان نامه

 لایه­های نمک ممکن است در بین سیستم­های جریان آب زیرزمینی ناحیه­ای یا محلی قرار گرفته و دائما از قسمت­های بالایی و حواشی در حال حل شدن بوده و باعث شوری آب­های زیرزمینی گردند. برای مثال در مناطق تگزاس و نیومکزیکو بییش از 200 متر نمک به وسیله­ی آب­های زیرزمینی انحلال یافته­اند.

جانسون و همکارانش (1977) به اختصار عوامل موثر در انحلال نمک را شرح داده­اند:

1– غیر اشباع بودن آب نسبت به نمک

2– وجود نهشته­ی نمکی و آب کافی

3– امکان حرکت آب در داخل یا بر روی نهشته­های نمکی و امکان خروج آب

4- انرژی (مانند بار هیدرواستاتیکی) که باعث جریان آب در سیستم گردد.

با وجود این شرایط، آب­های جوی به داخل زمین نفوذ کرده و انحلال نمک در زیر سطح اتفاق می­افتد و آب راه خود را به نواحی با ارتفاع کمتر ادامه می­دهد. تخلیه­ی چشمه­های شور حاصل از انحلال نمک و تبخیر آب­های شور در سطح زمین می­تواند باعث تولید و توسعه­ی پهنه­های نمکی گردد. چنین پهنه­های نمکی در دشت رولینگ (Rolling) در شمال تگزاس و جنوب غرب اکلاهاما به وسیله یوارد (1961) و ریشتر و کیلر (1986)، Ward,1961 و Richter and Kreitler,1986 توصیف شده­اند. آب­های شور تخلیه شده در این نواحی از چند هزار میلی­گرم بر لیتر تا 150000 میلی گرم بر لیتر کلر را در خود حل کرده که کیفیت آب-های سطحی را تا صدها مایل پایین تر تحت تاثیر قرار می­دهند (Richter,1993).

1 – 3 – حلالیت هالیت

قابلیت حلالیت مولی هالیت در 25 درجه سانتی گراد بسیار زیاد است به طوری که ثابت حلالیت آن طبق معادله 1 -1 برابر با 38 می­باشد.

معادله (1-1)                 = 38 Ksp = [Na+].[Cl]

 

جدول 1- 1- قابلیت انحلال کانی­هایی که به صورت متجانس حل می­شوند

 (دمای 25 درجه سانتی گراد و فشار کل یک بار)، (Lioyd et al,1985)

از آنجایی که ماکزیمم حد اشباع آب از کلسیت 500 میلی گرم در لیتر می­باشد بنابراین می­توان دریافت که انحلال هالیت 720 برابر انحلال کلسیت و 170 برابر ژیپس می­باشد که این خود بیانگر سادگی حلالیت هالیت می­باشد. حلالیت هالیت با افزایش درجه حرارت زیاد می­گردد. شکل 1 افزایش حلالیت هالیت را با افزایش درجه حرارت نشان می­دهد.

شکل1 – 1- افزایش حلالیت هالیت با افزایش درجه حرارت بر حسب میلی­گرم بر لیتر

و درصد وزنی(شیمی عمومی هیئت مولفان، 1364)

1-4 – شوری و انواع آن

شورابه آبی است که غلظت کلر آن از غلظت متوسط کلر جهانی در آب اقیانوس بیشتر باشد(Hem,1973). شور شدن که با افزایش میزان مواد جامد حل شده (TDS) تعریف می­شود، شایع­ترین نوع آلوده شدن منابع آب است.

افزایش شوری علاوه بر این که باعث بالا رفتن کل مواد شیمیایی آب می­شود باعث افزایش غلظت تشکیل دهنده­های خاصی نیز می­گردد.

 1 – 5 – تعیین منابع شوری

همانگونه که بحث شد منابع شوری گوناگونی وجود دارند. برای تشخیص و تفكیك منابع شوری از یكدیگر، از روش­های مختلفی استفاده می­گردد كه عمدتاً عبارتند از:

  1. آنالیز شیمیایی آب
  2. روش­های ایزوتوپی

برای نیل به این هدف از پارامترهای گوناگونی هم­چون كاتیون­های اصلی (Na,Mg,Ca) و آنیون­های اصلی (HCO3,SO4,Cl) و عناصر فرعی (K,I,Br,Li) و بعضی ایزوتوپ­های محیطی (14C,3H,2H,18O)استفاده می­گردد. در سال­های اخیر از این اجزاء شیمیایی و یا نسبت­های آن­ها جهت تفکیک منابع شوری استفاده شده است. جدول 2 نسبت­های به­كار رفته در تعیین منابع شوری را نشان می­دهد.

 

جدول1-2 – پارامترهای شیمیایی پیشنهاد شده جهت تفکیک منابع شوری (Richter, 1993)

1 – 6- روش­های شیمیایی تعیین انحلال نمک

1 – استفاده از نسبت Na/Cl

Leonard and ward (1962) اولین کسانی بودند که از این نسبت جهت تشخیص انحلال هالیت از شورابه­های میادین نفتی در اکلاهاما استفاده کردند. یک نوع چشمه­های شور در اکلاهامای غربی نسبت وزنی سدیم به کلر را بین 63/0 تا 65/0 نشان داده که بیانگر انحلال هالیت خالص (نسبت وزنی Na/Cl = 0.648 ) به عنوان منبع شوری می­باشد.

علاوه بر نسبت وزنی می­توان از نسبت مولی برابر با یک، برای نسبت سدیم به کلر (چون سدیم و کلر از لحاظ مولی به نسبت یک به یک با یکدیگر ترکیب می­شوند) و هم چنین نسبت سدیم به کلر برابر با یک بر حسب اکی والان در میلیون (epm) (چون ظرفیت Cl و Na هردو برابر یک می­باشد) جهت تشخیص انحلال به عنوان منبع شوری استفاده کرد. Gogel,1981 پیشنهاد کرد که اگر نسبت وزنی سدیم به کلر کمتر از 6/0 (بین 28/0 تا 54/0) باشد، بیانگر منشاء میدان­های نفتی چشمه­های شور می­باشد. وی با استفاده از همین روش و به دست آوردن نسبت وزنی سدیم به کلر بین 65/0 تا 67/0 برای رودخانه Ninnesch، منشا آلودگی سفره­ی Wellington را انحلال نمک تشخیص داد. همان طور که در شکل 2 نشان می­دهد شورابه­های میادین نفتی دارای سدیم کمتری نسبت به شورابه­های حاصل از انحلال نمک می­باشند، بنابراین نسبت سدیم به کلر در میدان­های نفتی کمتر از شورابه­های انحلال نمک می­باشد. با استفاده از این روش می­توان منابع آلوده کننده­ی آب سطحی را نیز مشخص کرد.

شکل1- 2- ترکیب نسبت وزنی سدیم به کلر برای شورابه­های میادین نفتی

 دایره­ها و شورابه­های انحلال نمک (مثلث ­ها)

نسبت وزنی سدیم به کلر حدود 65/0 بیانگر انحلال نمک و کمتر از 6/0 آلودگی بوسیله میادین نفتی را نشان می­دهد.

رودخانه­ی Cimarron (نقاط5 و6) بوسیله انحلال نمک و رودخانه­ی Little (نقطه4) و رودخانه­ی آرکانزاس (نقاط7 و8) به وسیله شورابه­های میادین نفتی آلوده شده­اند (Leinard and Ward,1962).

2 – استفاده از نسبت (Ca+Mg)/SO4

نهشته های هالیت اغلب همراه با ژیپس و انیدریت می­باشند. در شرایطی که انحلال صورت گیرد، کلسیم و منیزیم و سولفات به میزانی حل می­گردند که نسبت مجموع کلسیم و منیزیم به سولفات (هر کدام بر حسب مول بر لیتر) برابر با یک می­گردد. اگر این نسبت بسیار بزرگتر از یک گردد یعنی مقدار مجموع کلسیم و منیزیم بسیار بیشتر از سولفات باشد، بیانگر آلودگی به وسیله­ی میادین نفتی می­باشد.

شکل 3 این روابط را به خوبی نشان می­دهد. چنانچه مقادیر مجموع کلسیم و منیزیم به سولفات (برحسب مول بر لیتر) در مقابل نسبت سدیم به کلر (برحسب مول بر لیتر) رسم گردد، اب های حاصل از انحلال نمک پراکندگی نداشته و در محل تقاطع نسبت 1:1 قرار می­گیرند در صورتی که آب­های حوضه­ای عمیق به علت کمتر بودن مقدار سولفات پراکندگی را نشان ­می‌دهد‌.

شکل1- 3 – نسبت مولی (Ca+Mg)/SO4 در مقابل Na/Cl در چشمه های شور در دشت Rolling در تگزاس، (Richter and Kreitler,1986)، گروه A بیانگر انحلال هالیت و ژیپس و گروه C شورابه­های حوضه­ای عمیق را نشان ­می­دهد.

3 – استفاده از نسبت سولفات به کلر (SO4/Cl)

Mast (1982) با استفاده از مقادیر سولفات و کلر برحسب میلی­گرم بر لیتر منابع مختلف شوری و میزان اختلاط آن­ها را تشخیص داد. براساس شکل 4 مقادیر سولفات (ppm) در مقابل کلر (ppm) رسم گردیده و براساس اعضای انتهایی هم­چون آب­های شیرین، شورابه­های انحلال نمک و شورابه­های میادین نفتی مشخص می­گردند. در بین هر دو عضو انتهای خط اختلاط در نظر گرفته می­شود.

شکل1- 4 – منحنی­های اختلاط برای آب­های شیرین و منابع شوری مختلف (انحلال نمک و میادین نفتی) با استفاده از غلظت­های سولفات و کلر در کانزاس Mast,1982 (به نقل از Richter,1993)

4 – استفاده از نسبت SO4/Cl ، Ca/Cl ، Mg/Cl ، K/Cl

Whittemore (1984) نشان داد که چشمه­های حاصل از انحلال نمک معمولا دارای Ca/Cl ، Mg/Cl کمتر و SO4/Cl بیشتری نسبت به شورابه­های میادین نفتی می­باشند. Richter and Kreitter (1986) با استفاده از این نسبت­ها شورابه­های حاصل از انحلال نمک (گروهA) و شورابه ­های حوضه­ای عمیق (گروهC) را در منطقه­ی تگزاس از یکدیگر تفکیک کردند. همان طور که در شکل  5 می­گردد، مقادیر کلسیم، منیزیم و پتاسیم در شورابه­های حاصل از انحلال نمک به مراتب کمتر از آب­های حوضه­ای عمیق بوده و به همین علت پراکندگی نقاط در آب­های عمیق بیشتر از شورابه­های حاصل از انحلال نمک می­باشد (Richter,1993).

پایان نامه ارشد : معرفی روش MPCA روش منتخب آژانس کنترل آلودگی مینسوت در مکانیابی و ارزشیابی محل های دفن مواد زائد جامد و کاربرد آن

:                                                                        

 

دور نمودن زائدات از محل زندگی همواره بعنوان دغدغه ای برای انسان شهرنشین مورد توجه بوده است . در جوامع اولیه ،دفع زائدات در مناطق دورتر از محل زندگی افراد بعنوان راه حلی مناسب جهت دفع زباله ها تلقی می شد . با افزایش جمعیت و به دنبال آن افزایش حجم زائدات ، دفع این مواد در حاشیه مناطق مسکونی ، به تدریج سبب ایجاد آلودگی منابع آب و خاک شده و همچنین با ایجاد کانون های آلودگی و انتقال بیماری ها ،جوامع بشری تحت تاثیرات نامطلوب این امر قرار گرفتند . بعلاوه با گسترش فعالیت های انسانی ،زباله ها دارای انواع متعددی شده که دفع برخی از آن ها همراه با دیگرزائدات در حاشیه مناطق مسکونی سبب ایجاد مشکلات متعددی در این زمینه شده است .  بنابراین در دنیای امروز، انتخاب شیوه های مناسب دفع زباله و همچنین مکان مناسب جهت این امر ،دارای اهمیت زیادی است . در کشورهای توسعه یافته سال هاست که مطالعات و بررسی های گوناگونی در زمینه دفع صحیح زباله ها و به عبارت جامع تر در ارتباط با مدیریت پسماندها صورت گرفته است استفاده از تجربیات این گونه کشورها و هم چنین ایجاد تغییرات مناسب در روش های به کار رفته با توجه به وضعیت محیط زیست کشورهای در حال توسعه از جمله ایران سودمند خواهد بود . در کشور ایران از گذشته های دور دفع زائدات در مناطق حاشیه شهرها و روستاها انجام گرفته و بندرت مطالعات و بررسی های جامع در این زمینه انجام شده است . بنابراین با توجه به اینکه با پیشرفت علم و تکنولوژی در جهان ، رویکردها و روش های متعددی جهت مدیریت پسماندها ایجاد شده ،ضروری است که در ایران نیز برنامه هایی جهت مدیریت صحیح پسماند ها تدوین گردد . در این زمینه ، انتخاب محل های مناسب جهت دفع زباله های شهری دارای اهمیت زیاد است . در این مطالعه ، محل های دفع زباله در شهرستان ساوه مورد بررسی قرار گرفته و تناسب یا عدم تناسب مکانی آنها مورد مطالعه و ارزشیابی قرار گرفته است .   

 

بخش اول   

 

1-1 پیشینه تحقیق :                                                                          

 

 با توجه به اهمیت و ضرورت دفع صحیح مواد زائد جامد و نقش این امر در بهبود و ارتقاء سطح سلامت جامعه ،تاکنون پژوهش ها و مطالعات بسیاری در زمینه مکانیابی محل دفن مواد زائد جامد در جهان و بندرت در ایران صورت گرفته است . مکانیابی محل دفن زباله ، پیش از اقدام به دفع ،سبب می شود که در آینده این مکان به کانون آلودگی تبدیل نگردد و هم چنین از ایجاد مزاحمت برای کاربری های

 

مقالات و پایان نامه ارشد

 اطراف جلوگیری به عمل آید . با توجه به اینکه در کشور ایران ، انتخاب محل های دفن زباله ، عمدتا بدون توجه به معیارهای لازم برای این امر صورت گرفته ، لازم است که محل های دفن زباله موجود ارزشیابی گردند تا محل های دفع نامناسب ، تشخیص داده شوند . آنگاه می توان با توجه به معیارهای موجود برای مکانیابی محل دفن ، نسبت به انتخاب محل های جدید اقدام نمود .                                                                   1-1 سوابق داخلی: 

 

در ذیل به نمونه هایی از سوابق مطالعات داخلی در زمینه مکانیابی و ارزشیابی  محل های دفن زباله اشاره شده  است :                                                            – فرهادی(1378) در پایان نامه کارشناسی ارشد خود روش های جمع آوری و دفن مواد زائد جامد شهر کرج را مورد بررسی قرار داد. وی پس از تحلیل روش های جمع آوری و دفن مواد زائد جامد شهر کرج ، شیوه های دفن فعلی را به صورت کاملا ابتدایی ارزیابی نموده و همچنین یک دوره 6 ماهه در فصول تابستان و پاییز کیفیت مواد زائد جامد خانگی شهر کرج و میزان مواد تشکیل دهنده آن را تعیین نموده و در انتها در زمینه دفن بهداشتی مواد زائد جامد ، بازیافت و مکانیابی محل دفن برای شهر کرج پیشنهادهایی را ارائه نموده است.

 

– نژاد کورکی(1378) در پایان نامه کارشناسی ارشد خود به منظور تعیین مکان مناسب برای دفن مواد زائد جامد شهر کرمان از مدلی استفاده کرده است که در آن عواملی نظیر شیب ، سطح ایستابی ، آب زیرزمینی ، بارندگی سالیانه ، فاصله محل دفن تا شهر ، نوع سنگ و خاک ، فاصله از آب های سطحی ، جهت باد غالب منطقه و در دسترس بودن راه های مناسب نقش اساسی داشته است . در این مطالعه برای بالا بردن سرعت و دقت بررسی از سامانه اطلاعات جغرافیایی نیز استفاده شده است .

 

در نهایت محل پیشنهادی برای دفن مواد زائد در فاصله 7 کیلومتری شهر کرمان با مساحت 89 کیلومترمربع تعیین گردید.

 

-حیدرزاده(1379) در پایان نامه کارشناسی ارشد خود با در نظر گرفتن معیارهای هیدرولوژیک ، زمین شناسی، خاک شناسی، کاربری سرزمین،  فاصله و معیارهای اقتصادی و اجتماعی دو منطق بولین و فازی را برای گزینش مکان های مناسب برای دفن مواد زائد شهر تهران مورد مقایسه قرار داد و منطق فازی را برای این منظور مناسب تشخیص داد.

 

– فتحی(1379) در پایان نامه کارشناسی ارشد خود به منظور مکانیابی محل دفن مواد زائد عفونی اراک از نقشه های توپوگرافی ، کاربری اراضی، زمین شناسی ،خاک شناسی، منابع آب ، طرح های توسعه منطقه ای ، زلزله ، معادن ، مراکز جمعیتی ، وضعیت آب و هوایی و پیشنهادات ارائه شده از طرف متولیان امور شهری استفاده نمود .

 

 در نهایت 3 منطقه در جهات مختلف جغرافیایی و به شعاع 25 کیلومتری اراک بعنوان مناطق مورد نظر انتخاب و از بین این سه منطقه منطقه سوار آباد انجیرک با کاربری بایر و با استفاده از جدول مقایسه عوامل موثر در مکانیابی و کسب بیش ترین امتیاز نسبت به مناطق دیگر بعنوان مناسبترین مکان جهت دفن بهداشتی مواد زائد عفونی انتخاب گردید.

 

– زبردست (1380)در پژوهشی به کاربرد فرایند تحلیل سلسله مراتبی در برنامه ریزی شهری و منطقه ای پرداخت و این فرآیند را با توجه به سادگی ،انعطاف پذیری و به کارگیری معیارهای کیفی و کمی به طور همزمان و نیز قابلیت بررسی سازگاری در قضاوت ها در بررسی موضوعات مربوط به برنامه ریزی شهری و منطقه ای مفید معرفی نمود و با مثال عینی در رابطه با مکانیابی به معرفی این فرایند پرداخت.

 

– شکرایی (1381)در پایان نامه کارشناسی ارشد خود برای مکانیابی محل دفن بهداشتی مواد زائد جامد شهر ساری ، آن دسته از مناطقی که به هیچ وجه برای توسعه مورد نظر توانایی ندارند را از سایر مناطق جدا نمود سپس کار را بر روی زمین باقی مانده به انجام رسانید . برخی از عوامل که در مکانیابی محل دفن مواد زائد جامد ساری مورد بررسی قرار گرفتند عبارتند از : سطح آب زیرزمینی ، شیب، فاصله از شهر ، فاصله از منابع آب های سطحی و … در این پژوهش معیارهای مذکور با منطق های فازی و بولین مورد تجزیه و تحلیل قرار گرفتند و در نهایت نقشه مکان های مناسب بدست آمد و نتیجه حاصل از منطق ها مورد مقایسه قرار گرفته که منطق فازی جواب بهتری ارائه نمود .

 

-نظم فر(1382) در پژوهشی به مکانیابی محل دفن مواد زائد جامد شهر تبریز پرداخت . در این مطالعه عوامل موثر در مکانیابی محل دفن بررسی شد و با کمک منطق های فازی –بولین و ارزیابی چندمعیاره به مکانیابی محل دفن مواد زائد جامد پرداخته شد که با مقایسه منطق فازی و بولین ، منطق فازی عملکرد بهتری داشته و ارزیابی چندمعیاره نیز نتایج مطلوبی داشته است.

 

– صفری(1383) در پایان نامه کارشناسی ارشد خود با مروری بر ویژگی های مواد زائد جامد موجود در شهرستان بیدستان واقع در استان قزوین و همچنین شرایط اقلیمی و جغرافیایی این شهرستان و با ملحوظ نمودن پارامترهایی نظیر توپوگرافی، هیدرولوژی، زمین شناسی ، مجاورت با مناطق مسکونی و صنعتی و … و با استفاده از GIS مناطق مناسب جهت دفن بهداشتی زباله های شهرستان بیدستان را پیشنهاد نموده است . همچنین با بررسی کلیه روش های مدیریت مواد زائد جامد و با استفاده از نرم افزار WAGS نیازهای موجود در رابطه با پیش بینی ماشین آلات ، سرمایه برای خرید ماشین آلات و تامین نیروی انسانی مورد نیاز ، هزینه های تامین سوخت و نگهداری و سایر موارد طی 15 سال آینده را محاسبه و جزئیات را ارائه نموده است.

 

-فرهودی و همکاران(1384) در پژوهشی برای مکانیابی محل دفن مواد زائد جامد شهری شهر سنندج از GIS و منطق فازی استفاده نمودند . در این پژوهش با استفاده از داده هایی چون فاصله از شهر ،فاصله از جاده ، فاصله از فرودگاه، کاربری اراضی ، قابلیت اراضی و استفاده از مدل های مختلف تلفیق اطلاعات و نقشه ها که بر اساس مدل منطق فازی بود ، نقشه ها ترکیب شدند سپس برای محل دفن مواد زائد جامد در شعاع 20 کیلومتری در شمال شرقی سنندج در سه حوزه مکانیابی صورت پذیرفت.

 

– مددی (1384)در پایان نامه کارشناسی ارشد خود با استفاده از مدل غربال منطقه ای و محلی به مکانیابی و مدیریت محیط زیست محل دفن مواد زائد جامد شهر میانه پرداخت . در این مطالعه ابتدا نقشه های مورد نیاز برای بررسی عوامل طبیعی ، اقتصادی، کاربری زمین تهیه شد و مناطق فاقد توان برای احداث محل دفن در روی نقشه حذف گردید در مرحله بعد نقشه ها با هم ترکیب شده سپس مطالعات در مقیاس محلی انجام شد و بر اساس آن 5 مکان برای دفن مواد زائد جامد شهر میانه شناسایی و پیشنهاد شد . در مرحله آخر نیز برای مقایسه مناطق پیشنهادی به هر یک از معیارهای مورد نظر وزن و امتیاز داده شد . بر این اساس جداولی تهیه گردید که در هرکدام معیارها در 5 جایگاه وزندهی و امتیازبندی شدند و در نهایت مناطق مناسب برای احداث محل دفن معرفی گردیدند.

 

– قیاسی (13849) در پژوهشی به مکانیابی محل دفن مواد زائد جامد شهر اراک پرداخت . معیارهایی نظیر شیب ، فاصله از شهر، دشت های سیلابی ، فاصله از گسل ، جنس خاک و … در این پژوهش به کار گرفته شد و در نهایت 34 جایگاه در کلاس با قابلیت متوسط و 24 جایگاه با قابلیت عالی انتخاب گردیدند.

 

– سروری (1384)در پایان نامه کارشناسی ارشد خود ، جهت تعیین مناسبترین مکان جهت دفن زباله در شهرستان گنبدکاووس فاکتورهایی نظیر توپوگرافی ، کاربری اراضی ، هیدرولوژی، ژئوهیدرولوژی ، فاصله از جاده های اصلی و فرعی ،شرایط آب و هوایی ، فاصله از مراکز تولید زباله ، فاصله از مناطق مسکونی  و صنعتی و مساحت محل دفن را در نظر گرفت و لایه های مورد نظر را تهیه نمود و از طریق این جداول اقدام به همپوشانی لایه های مکانی کرد که در نهایت سناریوهای مورد نظر جهت انتخاب مکان دفن مناسب حاصل گردید و سه منطقه از میان مناطق دیگر برای محل دفن انتخاب گشت .

 

– صانعی(1384) در پایان نامه کارشناسی ارشد خود با در نظر گرفتن عواملی از قبیل توپوگرافی ، شیب ، جنس خاک ، زمین شناسی ،هیدرولوژی ، آب های سطحی و زیرزمینی ،فاصله از منابع آب سطحی،فاصله از شهر و مراکز جمعیتی ، فاصله از جاده های دسترسی ،فاصله از منابع تولید و ذخیره سازی مواد زائد جامد به مکانیابی محل دفن مواد زائد جامد در شهرستان دماوند پرداخته است در این پژوهش محدوده های  قابل قبول برای هرکدام از پارامترها تعیین شده و تجزیه و تحلیل نهایی صورت گرفته است . نهایتا نقشه گزینه های مکانی مناسب و بسیار مناسب برای دفن مواد زائد جامد در دماوند تهیه شده است .

پایان نامه ارشد : مقایسه کارآیی پوشش‌های کروم و کروم‌ اکسید برای جلوگیری از خوردگی فولاد کورتن در آب دریا

خوردگی[1] از مهم‌ترین مشکلاتی است که در صنایع نفت، گاز و پتروشیمی مقابله با آن هزینه زیادی را به خود اختصاص می‌دهد. خوردگی می‌تواند بر روی عمر تجهیزات، بهره‌برداری از آن‌ها، بازگشت سرمایه، کیفیت محصولات تولیدی و . . . مؤثر باشد.

خوردگی به شکل‌های گوناگون در زندگی روزمره به چشم می‌خورد. نقاط و حفره‌های قرمز مایل به نارنجی در تجهیزات نشتی مخازن آب، آب تیره خروجی از داخل شیرها، همچنین میخ­ها، چنگک‌‌ها، لوله‌‌ها، کانال‌ها، ظروف آشپزخانه و قوطی­های حلبی خورده شده نمونه‌های متداولی از خوردگی هستند. خوردگی با دید غیر تخصصی اغلب بر کهنگی تجهیزات دلالت داشته و قابل چشم پوشی است. در‌صورتی‌که خوردگی بیانگر کاهشی قابل توجه در ارزش یک جسم جامد است که در معرض یک برخورد شیمیایی مستقیم قرار گرفته است.

خوردگی محدود به فلز نبوده بلکه شامل مواد غیر فلزی مانند پلیمرها، مواد نسوز، مواد مرکب و مواد دیگر نیز می‌شود. از نظر ترمودینامیکی خوردگی یک فرآیند خود‌ به ‌خودی است که در جهت کاهش انرژی آزاد[2]حرکت می­کند.

          مهندسی خوردگی کاربرد دانش و فن یا هنر جلوگیری یا کنترل خسارت ناشی از خوردگی به روش اقتصادی و مطمئن می‌باشد. برای اینکه مهندس خوردگی به خوبی از عهده وظایف خود برآید بایستی با اصول و عملیات مبارزه با آن، خواص شیمیایی، متالورژیکی، فیزیکی و مکانیکی مواد، آزمایش‌های خوردگی، ماهیت محیط‌های خورنده، قیمت مواد اولیه و . . . آشنا باشد. همچنین در حل مسئله خوردگی بایستی روشی را انتخاب نماید که بیشترین بهره را در بر داشته باشد.

  • تعریف خوردگی

خوردگی را تخریب یا فاسد شدن یك ماده در اثر واكنش با محیطی كه در‌آن قرار دارد تعریف می‌‌‌كنند. بعضی‌ها اصرار دارند كه این تعریف بایستی محدود به فلزات باشد، ولی غالباً مهندس خوردگی بایستی برای حل یك مسئله هم فلزات و هم غیر فلزات را در نظر بگیرد. مثلاً، تخریب رنگ و لاستیك بوسیله نور خورشید یا مواد شیمیایی، خورده شدن جداره كوره فولاد‌سازی، و خورده‌ شدن یك فلز جامد بوسیله مذاب یك فلز دیگر تماماً خوردگی نامیده می‌شوند. خوردگی می‌تواند سریع یا كند صورت گیرد ]1[.

خوردگی فلزات را همانطور كه در شكل 1-1 نشان داده‌ شده ‌است می‌توان برعكس متالورژی استخراجی[3] در نظرگرفت. در متالورژی استخراجی، هدف عمدتاً بدست آوردن فلز از سنگ معدن و تصفیه یا آلیاژ‌سازی آن برای مصارف مختلف می‌باشد. اكثر سنگ معدن‌های آهن حاوی اكسیدهای آهن هستند و زنگ‌زدن فولاد بوسیله آب و اكسیژن منجر به تشكیل اكسید آهن هیدراته[4] می‌گردد. اگر چه اكثر فلزات موقعی كه خورده می‌شوند تشكیل اكسیدهایشان را می‌دهند ولی لغت زنگ زدن فقط در مورد آهن و فولاد بكار برده می‌شود.

سنگ آهک

 

پایان نامه و مقاله

 

کارخانه ذوب  آهن  احیا ، تصفیه، ریخته گری ، نورد، ساخت

 

تصفیه

ریخته گری

نورد

ساخت

     ورق
لوله    لوله
بدنه اتومبیل (اتمسفر)
خطوط لوله زیرزمینی
زنگ (اکسید آهن هیدراته)
معدن

شكل 1-1  متالورژی استخراجی و برعكس آن

به طور كلی خوردگی را می‌توان به سه صورت ذیل تعریف نمود:

  • تخریب و انهدام توسط عوامل غیر مكانیكی.[5]
  • تخریب و انهدام توسط واكنشهای شیمیایی و الكترو شیمیایی فلز و محیط.
  • عكس استخراج.

1-3-     هزینه‌های خوردگی

تخمین­ هزینه­های سالانه خوردگی در ایالات متحده بین 8 میلیارد دلار تا 126 میلیارد دلار می‌با‌‌شد] 1[. مهندسان معتقدند كه 30 میلیارد دلار واقعی‌ترین رقم باشد. به هر ترتیب، خوردگی از لحاظ اقتصادی بسیار زیان آور است و برای كاهش‌دادن آن كارهای زیادی می‌توان انجام داد. اگر این نكته را در نظر بگیریم كه هرجا فلز و مواد دیگر مورد استفاده قرار می‌گیرند خوردگی با درجه و شدت‌های متفاوتی واقع می‌گردد، این رقم‌های بزرگ دلاری چندان غیر منتظره نخواهند بود. علاوه بر زیان­های مستقیم خوردگی، هزینه‌های غیر مستقیم خوردگی حاصل از توقف فرآیند[6] تولید صنایع نفت، گاز و پتروشیمی، پایین آمدن بازده تجهیزات و خارج شدن از شرایط بهره برداری مطابق طراحی، نیز هزینه‌‌هایی است که باید در نظر گرفته شود. عدم تولید در هنگام توقف در یك واحد نفت، گاز و پتروشیمی جهت تعمیرات می‌تواند تا میلیونها دلار در روز زیان وارد سازد. نشتی‌ها در خطوط لوله و مخازن منجر به عدم تولید بهینه می‌گردد. این نشتی‌ها می‌تواند باعث بروز آلودگی آب‌های زیرزمینی شده و مشكلات زیست محیطی را نیز ایجاد نماید كه هزینه‌های مورد نیاز برای حل چنین مشكلاتی سرسام آوراست. در حقیقت اگر خوردگی وجود نداشت اقتصاد جامعه ما به شدت تغییر می‌كرد. مثلاً اتومبیل‌ها، كشتی‌ها، خطوط لوله‌های زیرزمینی و وسایل خانگی احتیاج به پوشش نداشتند، صنایع فولاد زنگ نزن[7] از بین می‌رفتند و مس فقط برای مقاصد الكتریكی بكار می‌رفت. اكثر كارخانجات و محصولاتی كه از فلز پوشش‌دار ساخته می‌شوند از فولاد یا چدن ساخته می‌شدند] 1[.

اگرچه خوردگی اجتناب ناپذیر است، ولی هزینه آن را به مقدار زیادی می‌توان كاهش داد. مثلاً یك آند ارزان قیمت منیزیم می‌تواند عمر تانك آب گرم خانگی را دو برابر كند. شستشوی اتومبیل برای زدودن نمك‌هایی كه برای یخ بندان روی جاده می‌پاشند مفید است. انتخاب صحیح مواد و طراحی خوب، هزینه‌های خوردگی را كاهش می‌دهد. یك برنامه صحیح تعمیرات و نگهداری وارد صحنه می‌شود و می‌تواند موثر باشد و ماموریت اصلی آن مبارزه با خوردگی است.

جدا از مخارج مستقیم دلاری، خوردگی یك مشكل جدی است زیرا بطور روشنی باعث تمام شدن منابع طبیعی ما می‌گردد. مثلاً فولاد از سنگ آهن بدست می‌آید و میزان تولید داخلی سنگ آهن پر‌عیار كه مستقیماً قابل استفاده باشند، به شدت كاهش یافته است. توسعه صنعتی سریع بسیاری از كشورها نشان می‌دهد كه رقابت برای  قیمت منابع فلزی افزایش خواهد یافت.

1-4-      خسارات ناشی از خوردگی

در این قسمت بعضی اثرات زیان بار خوردگی تشریح خواهد شد  ]2[‌

1-4-1-  ظاهر

سطوح زنگ‌زده خوشایند نیستند. تجهیزات زنگ‌زده یا به شدت خورده شده در یك كارخانه تاثیر بدی روی بیننده خواهد گذاشت. به همین دلیل بدنه ماشین‌ها را رنگ کرده و یا در سازه‌های خارجی ساختمان‌ها از فولاد زنگ نزن، آلومینیوم، یا مس استفاده می‌شود.

1-4-2-  مخارج تعمیرات و نگهداری و بهره برداری

بازسازی سطوح خورده‌شده و تعمیر آن‌ها بسیار پر هزینه است. به كاربردن مواد مقاوم در برابر خوردگی نیز مخارج زیادی را در بر دارد. بنابراین برای محافظت از این سطوح هزینه هنگفتی صرف می‌شود

1-4-3-  تعطیلی كارخانه

غالباً بخاطر انهدام غیر منتظره ناشی از خوردگی، واحدی را متوقف ‌می‌سازند یا قسمتی از یك سیستم را می‌خوابانند. و این خود منجر به توقف تولید و یا کند شدن روند آن شده و در برخی موارد افرادی را بیکار می‌کند.

1-4-4-  آلوده شدن محصول

در اكثر موارد قیمت یك محصول در بازار به خلوص و كیفیت آن بستگی دارد. عاری بودن از آلودگی‌های جزئی فاكتور حیاتی در تولید و حمل و نقل پلاستیك‌‌های شفاف، رنگ‌ها، مواد غذایی، داروها و نیمه هادی‌ها[8]ست. در بعضی موارد مقدار كمی خوردگی كه باعث وارد شدن یون‌های فلزی به داخل محلول می‌گردد ممكن است باعث تجزیه كاتالیزوری[9] یك محصول گردد. از جمله این موارد تولید و انتقال پراكسید هیدروژن[10] غلیظ و یا هیدرازین[11] می‌باشد. درمواردی كه با آلودگی و تجزیه محصول مواجه هستیم عمر قطعه فاكتور مهمی نخواهد بود با وجود اینكه فولاد معمولی ممكن است سال‌ها دوام بیاورد، ولی فلز گرانتری بكار برده می‌شود تا از آلودگی محصول به محصولات خوردگی ناشی از فولاد معمولی اجتناب گردد.

1-4-5-  نشت یا از بین رفتن محصولات با ارزش

نشت جزئی سولفوریك‌اسید به فاضلاب نگرانی حادی ایجاد نمی‌كند، زیرا سولفوریك‌اسید ماده ارزان قیمتی است. اما، نشت یا از بین رفتن ماده‌ای كه گالنی چند صد دلار ارزش دارد بایستی به سرعت متوقف گردد. نشت جزئی تركیبات یا محلول‌های اورانیم خطرناك است و می‌تواند خیلی گران تمام شود. در چنین مواردی استفاده از طراحی مناسب‌تر و مواد بهتر برای ساخت تجهیزات بخوبی قابل توجیه هستند.

1-4-6-  اثرات بر امنیت و قابلیت اعتماد

كاركردن با مواد خطرناك مثل گازهای سمی، كلریدریك‌اسید،‌ سولفوریك‌اسید و نیتریك‌اسید غلیظ، مواد منفجره و قابل اشتعال، مواد رادیواكتیو، و مواد شیمیایی در دماها و فشارهای بالا مستلزم استفاده از نوعی مواد ساختمانی است كه خطر انهدام خوردگی را به حداقل برساند. صرفه‌جویی در مواد ساختمانی در مواردی كه امنیت به خطر می‌افتد، مطلوب نیست. ملاحظات بهداشتی نیز می‌توانند مهم باشد مثل آلودگی آب آشامیدنی، محصولات خوردگی می‌توانند باعث شوند كه ضد عفونی كردن تجهیزات مشكل‌تر گردد.

  • انواع خوردگی

دسته‌بندی­های مختلفی می‌توان برای انواع خوردگی داشت، یك نوع دسته‌بندی برای اساس ظاهر خوردگی می‌باشد كه برای تشخیص شكل ظاهری خوردگی، گاهی اوقات چشم غیرمسلح كافی می‌باشد و گاهی اوقات نیاز به بزرگنمایی‌های بالاتری می‌باشد، بر اساس شكل ظاهری، خوردگی‌ را می‌توان به هشت نوع تقسیم‌بندی كرد  ]2S/Cr2O3……….[.

1-5-1- خوردگی یکنواخت

در این نوع خوردگی لایه‌های سطحی فلز مورد حمله قرار گرفته و اثرات خوردگی در تمام سطح مشاهده شده و کاهش ضخامت در این نقاط تقریبا یکسان می‌باشد. به طور مثال زنگ زدگی معمولی آهن و کدر شدن نقره و تیرگی نیکل از این نوع خوردگی می‌باشند.

این نوع خوردگی معمول­ترین نوع خوردگی است. عمر تجهیزاتی که متحمل این نوع خوردگی می‌شوند، را می‌توان با آزمایش‌های ساده­ای همچون کوپن گذاری و اندازه­گیری میزان کاهش وزن تخمین زد ]2S/Cr2O3…..[.

1-5-2- خوردگی گالوانیکی

این نوع خوردگی وقتی رخ می‌دهد که دو فلز یا آلیاژ متفاوت (یا دو ماده متفاوت دیگر همانند آلیاژ کربن و فلز) درحضور یک محیط خورنده با یکدیگر تماس پیدا کنند. درمنطقه تماس، فرآیند الکتروشیمیایی به وقوع می‌پیوندد که در آن ماده‌ای به عنوان کاتد عمل کرده و ماده‌ی دیگر آند می‌شود. در این فرآیند کاتد در برابر اکسید شدن محافظت شده و آند اکسید می‌شود ]2S/Cr2O3….[.

1-5-3- خوردگی شکافی

این خوردگی وقتی رخ می‌دهد که یک عامل خورنده در فاصله باریک بین دو جز گیر کند. با پیشرفت واکنش، غلظت عامل خورنده افزایش می‌یابد بنابراین واکنش با نرخ فزاینده‌ای پیشروی می‌کند ]2S/Cr2O3……….[.

دانلود پایان نامه ارشد: طراحی و پیاده‌سازی یک زبان خاص دامنه برای آزمون نرم‌افزار


امروزه برنامه­های کاربردی و نرم‌افزاری نقش بسزایی در زندگی روزمره دارند و بنابراین نیاز است هرگونه خطا در این برنامه­ها به حداقل مقدار ممکن برسد. در این میان برنامه­های کاربردی وب از جمله برنامه­هایی هستند که بیشتر از بقیه مورد استفاده قرارگرفته و اهمیت یافته­اند لذا آزمون آن­ها نیز بسیار مورد توجه است. به دلیل تخصصی بودن حوزه­ی آزمون نرم­افزار، زبان­های خاص دامنه متعددی برای این حوزه به وجود آمده­اند که نسبت به زبان­های همه‌منظوره کاراتر عمل می­کنند. یکی از این حوزه­ها آزمون برنامه­های کاربردی وب است. در اکثر روش‌های تولید برنامه­های کاربردی فاز آزمون وجود دارد؛ اما در مورد برنامه­های کاربردی وب این قضیه کمی متفاوت است چرا که این برنامه­های کاربردی دو بخشی هستند. بخشی از آن­ها به قسمت سرور مربوط می­شود و بخش دیگر از مرورگر کاربر به سمت سرور رفته و از دید کاربر بررسی می­شوند؛ بنابراین برای برنامه­های کاربردی وب دو نوع آزمون برای دو بخش مختلف صورت می‌پذیرد [1]:

·        آزمون الگوریتم‌ها و عناصر داخلی سرور

·        آزمون این برنامه‌ها از دید کاربر و آزمون موارد کاربری سیستم

 

پایان نامه و مقاله

 

چارچوب‌های متعددی وجود دارند که کار و تعامل با برنامه‌های کاربردی وب را ساده‌تر ساخته و به خودکارسازی آزمون آن‌ها می‌پردازند که نمونه­هایی از آن­ها عبارتند از جب[1]، کانو[2]، گردل[3]  و… که با زبان گرووی[4]  طراحی‌شده‌اند چرا که زبان گرووی از جهات مختلفی که در فصل‌های آتی ذکر خواهد شد، مناسب‌تر از هر زبان دیگری برای انجام این کار است. بر خلاف گذشته که فقط آزمون واحد برای برنامه‌های کاربردی وب انجام می‌شد، این چارچوب‌ها زمینه‌ی ایجاد آزمون عملکردی را نیز فراهم می­کنند. از آنجا که آزمون برنامه‌های کاربردی وب با این چارچوب‌ها ساده‌تر انجام می‌گیرد و در بین آن‌ها محیط جب با دیگر چارچوب‌ها و تمام مرورگرها سازگار است، از آن استفاده شده است تا زبانی برای آزمون بار در برنامه‌های کاربردی وب طراحی شود.

1-2- بیان مسئله
اهمیت آزمون نرم‌افزار و اثرات آن بر كیفیت نرم‌افزار کاملاً واضح است. نوشتن آزمون‌ها کاری گران‌قیمت، خواندن آن‌ها مشقت‌بار و نگهداری‌شان بسیار دشوار است. برای کار با این حوزه به تخصص بالایی نیاز است به همین دلیل این تفکر به وجود آمده است که برای دامنه‌ی آزمون نرم‌افزار، زبانی طراحی شود تا آزمون‌ها با تمرکز و تخصص بیشتری انجام گیرند. آزمون عملکردی برنامه‌های کاربردی وب به طور موثر، همواره یک چالش بوده است چرا که با وجود دشواری که در مسیر نوشتن و آزمون این برنامه‌ها وجود دارد اما باز هم تا کنون فقط آزمون واحد به صورت سنتی برای وب وجود داشته است .[1] برخی از اشکالات اساسی در یک برنامه وب، مواردی هستند که یک آزمون واحد هیچ راهی برای بررسی آن‌ها ندارد.

متأسفانه، تحقیقات انجام‌شده نشان می‌دهد که استفاده از ابزارها برای نوشتن و اجرای آزمون عملکردی دست و پاگیر هستند. تفاوت‌های موجود در مرورگرها و محیط‌ها باعث شده است که اجرای آزمون‌ها توسط توسعه‌دهندگان بر روی رایانه‌های مختلف تبدیل به یک چالش شود و یا اینکه اجرای آن عملی نباشد. همچنین نشان‌دهنده‌ی این است که حتی پس از سرمایه­گذاری زمان و تلاش برای نوشتن آزمون عملکردی، آن‌ها تمایل دارند که بسیار شکننده باشند و همچنین فهم آن‌ها برای توسعه‌دهندگان دیگر مشکل است. در این پایان‌نامه از جب که تمامی این موارد را تغییر داده و محیطی ساده فراهم آورده است تا بتوان با برنامه‌های کاربردی وب به سادگی تعامل برقرار کرد، استفاده شده است تا یکی از این چالش­ها برطرف شده و با طراحی یک زبان خاص دامنه، آزمون عملکردی برای حوزه‌ی آزمون بار وب‌سایت صورت پذیرد تا بتوان برنامه‌های کاربردی وب را باکیفیت بالاتر عرضه داشت.

 
مداحی های محرم