موضوع: "بدون موضوع"
دانلود پایان نامه ارشد: طراحی استراتژی کنترل سلسله مراتبی زمان واقعی در خودروهای هایبرید برقی
جمعه 99/10/26
:
با توجه به پیچیدگی خودرو هایبرید برقی تاکنون روش ها و الگوریتم های کنترلی متفاوتی برای کنترل آن بکار رفته است. در یک دسته بندی کلّی می توان استراتژیهای کنترلی در خودروهای هایبرید برقی را به پنج دسته تقسیم کرد:
1) استراتژی کنترلی تجربی
این روش بر پایه نتایج بدست آمده از اطلاعات تجربی و آزمایشگاهی می باشد وبراساس مدلهای استاتیکی سیستم می باشد. در این روش مدهای عملکردی سیستم خودرو هایبرید قابل شناسایی بوده و می توان به آسانی این روش را در عمل پیاده سازی کرد.
2) استراتژی کنترلی مبتنی بر بهینه سازی استاتیکی
در این روش از فرض های استاتیکی و شبه استاتیکی برای مدلسازی استفاده شده و با استفاده از نقشه های بازده موتور احتراقی و سایر زیر سیستمهای نیرومحرکه رانشی خودرو ، استراتژی کنترل بنا می شود.
3) استراتژی کنترلی مبتنی بر کنترل بهینه
این روش مبتنی بر طبیعت دینامیکی و شبه استاتیکی زیر سیستم ها بوده و بر پایه روش های برنامه ریزی دینامیکی و تئوری کنترل بهینه
استوار می باشد.
4) استراتژی کنترل مبتنی بر کنترل دینامیکی
این روشها بر پایه معادلات حالت سیستم دینامیکی خودرو هایبرید برقی بنا نهاده شده است و از روشهایی چون تئوری لیاپانوف ، کنترل تطبیقی و … برای تحلیل پایداری سیستم استفاده می شود.
5 ) استراتژی کنترل مبتنی بر روشهای هوشمند
در این روش از روشهای هوشمند مانند الگوریتم ژنتیک، کنترل فازی ، شبکه عصبی و… استفاده می شود. استراتژیهای هوشمند در فصل دوّم بصورت کلّی آمده است.
1-1) استراتژی های کنترلی بر پایه قوانین تجربی
بسیاری از استراتژیهای کنترلی عملکردی برپایه مشاهدات و قوانین تجربی می باشد. در این راستا استراتژی های کنترلی ساده ای در مراکز تحقیقاتی دنیا برروی خودروهای هایبرید برقی اعمال شده است. به عنوان نمونه در مرجع[1]، در شرایطی که حالت شارژ[1] باتری ها در حد بالایی است خودرو به صورت الکتریکی خالص عمل می کند و در بزرگراهها و یا در شرایط کاهش SOC از موتور احتراقی برای جبرانسازی SOC باتریها استفاده می شود. نتایج تجربی نشان می دهد که در این شرایط خودرو قادر به طی مسافت رانشی معادل 400 کیلومتر در سیکل شهری است. در مرجع[2] استراتژی مدیریت انرژی براساس استراتژی ثابت نگهداشتن حالت شارژ باتریها ارائه شده است. در این حالت ابتدا مدهای عملکردی خودرو براساس قوانین تجربی شناسایی شده ، سپس کنترلر خودرو فرامین کنترلی را براساس فیدبک پارامترهایی نظیر ،حالت شارژ باتریها، سرعت موتور احتراقی و سرعت خودرو به کنترل کننده موتور احتراقی،کنترل کننده موتور الکتریکی ،کنترل کننده باتری و کنترل کننده ترمزها صادر می کند. در این حالت مد های عملکردی خودرو براساس قوانین انتخاب می شود. شکل (1-1) ساختار سیستم کنترل خودرو هایبرید برقی که براساس آن استراتژی کنترل بنا نهاده شده است، نشان می دهد. همانطور که مشاهده می شود، کنترل کننده اصلی خودرو بر اساس سیگنال شتاب گیری و ترمز گیری، به هر یک از کنترل کننده های زیر سیستم ها، فرمانهای کنترلی را اعمال می کند . در این حالت مد های عملکردی سیستم ابتدا تعیین شده و سپس بر این اساس فرمانهای کنترلی اعمال می گردد. در این قسمت به بررسی مدهای عملکردی می پردازیم:
1-1-1) مد رانشی:
فرض کنید La که بین صفر و یک می باشد ، سیگنال موقعیت شتاب دهنده باشد که به کنترل کننده سیستم خودرو فرستاده می شود. در حالتی که شتاب دهنده کاملاً آزاد باشد، La=0 و تقاضای گشتاور صفر می باشد. حالتی که شتاب دهنده کاملاٌ فشرده باشد، La=1 و نشان دهنده ماکزیمم تقاضای گشتاور (Mamax) می باشد. در این حالت گشتاور مورد نیاز در حالت شتابگیری بصورت رابطه (1-1) تعریف می شود:
Ma=La´Mamax
فرض کنید که Le سیگنال فرمان توان موتور احتراقی باشد که توسط کنترلر سیستم خودرو اعمال می شود و بین صفر و یک می باشد.دریچه هوا موتور احتراقی اگر کاملاٌ بسته باشد ، Le=0 و هیچ توانی تولید نمی شود. اگر دریچه هوا کاملاً باز باشد، Le=1 و ماکزیمم توان توسط موتور احتراقی تولید می شود(Memax) . بنابراین گشتاور موتور احتراقی در سرعت w بصورت رابطه(2-1) می باشد:
(2-1)Me=Le´Memax(w) اگر Lm سیگنال فرمان توان موتور الکتریکی که توسط کنترلر خودرو به کنترل کننده موتور الکتریکی اعمال می شود. اگر Lm<0 عملکرد موتور به گونه ای است که نقش ژنراتوری دارد و به عنوان شارژ کننده باتری و یا در حالت بازیافت انرژی ترمزی عمل می کند. وقتی که Lm>0 باشد، موتور الکتریکی نقش موتوری در رانش خودرو دارد. بنابراین گشتاور موتور الکتریکی در سرعت w بصورت رابطه (3-1) می باشد:
(3-1) Mm=Lm´Mmmax(w)
که در آن Mmmax ماکزیمم گشتاور موتور الکتریکی می باشد.
[1] State Of Charge (SOC)
1-Continuos Variable Transmission
پایان نامه ارشد : بررسی اثرات جایگزینی پودر و روغن ماهی با منابع گیاهی بر فلور باکتریایی روده فیل ماهیان جوان (Huso huso)
جمعه 99/10/26
آبزی پروری در راستای تأمین نیازهای غذایی انسان و استفاده از مواد پروتئینی با منشأ حیوانی که کیفیّت مطلوب دارند از اهمیّت بسزایی برخوردار است. مطابق برآورد سازمان خواروبار جهانی، میزان تقاضای ماهی برای مصارف انسانی حدود 110 میلیون تن در سال 2010 و سهم آبزی پروری در تولید کل جهانی 38 درصد می باشد. با توجه به بالا بودن میزان تولید در برخی گونه ها و آسان بودن تولید آبزیان در مقایسه با سایر فرآورده های پروتئینی و بالا بودن ارزش غذایی آنها، امروزه آبزی پروری به عنوان یكی از سریع ترین فعالیتهای موثر در افزایش تولید غذا مورد توجه قرار گرفته است (Hasan, 2002). همچنین آبزیان یکی از با ارزش ترین منابع تولید پروتئین و سایر مواد مغذی در رژیم غذایی بسیاری از جوامع و کشورها می باشند. براساس گزارش های سازمان خواربار و کشاورزی ملل متحد (FAO) در سالهای اخیر میزان صید و تولیدات حاصل از فعالیت های آبزی پروری برای بیش از 6/2 بیلیون نفر از جمعیت کره خاکی غذا تامین نموده است که این مقدار معادل حدود 20 درصد از سهم گوشت سایر حیوانات در جیره انسانی می باشد. در سال های 2005 ، 2006 و 2007 تولیدات شیلاتی (صید و آبزی پروری ) به ترتیب به 142 ، 160 و 175 میلیون تن رسید و سهم تولیدات آبزی پروری در سال 2006 بیش از
60 میلیون تن بالغ گردید. در سال 2010 میزان صید (88 میلیون تن) و تولیدات آبزی پروری (59 میلیون تن) در مجموع 148 میلیون تن گزارش شد. از این مقادیر تقریباً 75 درصد برای مصارف انسانی و 25 درصد برای مصارف غیرماکول استفاده شدند. این در صورتی است که از سال 2004 سهم مصارف انسانی روند افزایشی داشته است. در سالهای اخیر میزان صید آبزیان کمتر از 88 میلیون تن می باشد و در آینده انتظار می رود با کاهش 50 درصد ذخایر به دلیل صید و بهره برداری بی رویه، تولیدات آبزی پروری شتاب فزاینده ای داشته باشد. بر اساس گزارش سازمان خواربار و کشاورزی برآورد شده است که تنها 25 درصد از ذخایر طبیعی قابل برداشت می باشد.
1-2-بیان مسئله
افزایش فزاینده جمعیت انسانی کره زمین از یک سو سبب برداشت بیش از حد، تخریب و تصرف زیستگاه های طبیعی به ویژه مکان های زادآوری جوامع گیاهی و جانوری و در نتیجه کاهش شدید تولید طبیعی و از سوی دیگر سبب افزایش تقاضا به ویژه پروتئین و به طور خاص پروتئین سفید شده است. جمعیت های طبیعی تاسماهیان که از کهن ترین و مهمترین ماهیان تجاری و بوم شناختی جهان محسوب می شوند، نیز از این قاعده مستثنا نبوده و به شدت در معرض نابودی و انقراض قرار دارند. بر اساس آمارهای جهانی در حالی که در سال های پایانی دهه 1970 میلادی، برداشت یا صید تاسماهیان از محیط های طبیعی بیش از 33000 تن و در سال 1991 میلادی حدود 15000 تن در سال بود، به کمتر از 500 تن در سال 2006 و 385 تن در سال 2009 میلادی رسید (; 2009 FAO, 2006). کاهش شدید جمعیت های طبیعی تاسماهیان شوک بزرگی را بر جوامع علمی بویژه دانشمندان شیلاتی و نیز مقامات اجرایی کشورهای تولید کننده ماهیان خاویاری وارد نمود. با توجه به به موارد فوق و خطر انقراض ماهیان خاویاری، کشورهای ساحلی خزردر سال 1390 در باکو توافق کردند که صید ماهیان خاویاری برای ۵ سال ممنوع شود. اما بنظر کارشناسان این اقدام برای حفظ نسل ماهیان خاویاری کافی نیست و بنابراین به همراه ممنوعیت صید، پرورش تمام دوره ای و اهتمام به آبزی پروری این گونه های ارزشمند در منابع آبهای داخلی رسید. در بین کشورهای اروپایی، ایتالیا با 1200 تن گوشت و 25 تن خاویار، فرانسه با 250 تن گوشت و 20 تن خاویار، آلمان با 350 تن گوشت و 6 تن خاویار، روسیه با 2400 تن گوشت و 5/3 تن خاویار از مهمترین کشورهای تولیدکننده گوشت و خاویار پرروشی محسوب می شوند. در قاره آمریکا، ایالات متحده با تولید 20 تن خاویار در سال 2007 (عمدتاً برای مصرف داخلی) یکی از تولیدکنندگان عمده خاویار پرورشی محسوب می گردد. در بین کشورهای آسیایی، جمهوری خلق چین با پرورش 17 گونه از ماهیان خاویاری و با تولید 25 هزار تن گوشت در سال 2009 و تولید 16 تن خاویار پرورشی به عنوان یکی از کشورهای پرورش ماهیان خاویاری مطرح شده است. اکنون دیگر پرورش ماهیان خاویاری در محیطهای محصور امری نادر و خارق العاده محسوب نمی گردد. بر اساس گزارش سازمان بین المللی خواروبار جهانی (فائو) در سال 2006 تولید گوشت تاسماهیان پرورشی که در اواسط دهه 1980 کمتر از 400 تن در سال بود به حدود 25000 تن در سال 2006 و 32576 تن در سال 2009 میلادی رسید که مهمترین عامل آن توجیه اقتصادی و قیمت بالای خاویار بود (پورکاظمی،1387 ). سیستم های پرورش ماهیان خاویاری در مناطق مختلف جهان متفاوت می باشد. اکثر کشورهای پیشرفته جهان با سیستم مداربسته و با استفاده از غذای کنسانتره فرموله شده مبادرت به پرورش تاسماهیان می نمایند در حالیکه سیستم های دیگر از قبیل پرورش در حوضچه های بتنی گرد، چند ضلعی، مستطیلی نیز در کشور های در حال توسعه مورد استفاده قرار می گیرد. علاوه بر روش های فوق، پرورش ماهیان خاویاری در استخرهای خاکی و بویژه پرورش در قفس در پشت سدها و آب بندانهای بزرگ (چین، بلغارستان) و کانالهای آبرسانی (روسیه) مورد استفاده قرار می گیرد.
ماهیان خاویاری یكی از با ارزشترین گونه های آبزیان بشمار می روند كه از قدمت بسیار طولانی برخوردارند و به این علت “فسیل زنده” نام گرفته اند. در حاضر بیش از 27 گونه از انواع تاس ماهیان در آبهای جهان زیست می نمایند كه چند گونه از آن از قبیل تاس ماهی ایرانی (Acipenser persicus) ، تاس ماهی روسی (A. gueldenstaedti) ، شیپ (A. nudiventris) ، ازون برون(A. stellatus) ، فیل ماهی (Huso huso) و استرلیاد(A. ruthenus) بیشترین گونه ها را در دریای خزر و حوضه آبریز آن تشكیل می دهند. این گونه ها در دریای خزر بیشترین ذخایر تاس ماهیان جهان را تشكیل میدهند. طبق آمار موجود 90% خاویار جهان از این دریا تامین می گردد. بیشترین خاویار تولیدی از سوی گونه ازون برون ، تاس ماهی روسی و تاس ماهی ایرانی می باشد. مقدار خاویار تولیدی از گونه های فیل ماهی و شیپ كمتر از سه گونه دیگر می باشد و گونه استرلیاد فقط در رودخانه های آب شیرین، مخصوصاً در رودخانه ولگا زیست می كند. فیلماهی با نام علمی ( Huso Huso) مشهورترین ماهی خاویاری جهان است، خاویار آن ممتاز، درشت و گرانترین خاویار به شمار می رود. از خصوصیات جالب توجه این ماهی سرعت رشد حیرت انگیز آن و زاد و ولد بالای آن است اما آن چه او را در صنعت پرورش ماهیان خاویاری مشهور ساخته است، عادت پذیری سریع به غذای مصنوعی و تحمل شرایط محیطی نامساعد و سرعت رشد بالای این گونه می باشد. سرعت رشد فیلماهی در مقایسه با سایر گونه های پرورشی بسیار بالاتر است، بطوریکه در شمال کشور طی 36 ماه به وزن بالای 10 کیلوگرم می رسد. همچنین این ماهی نسبت به شرایط نامساعد محیطی (کمبود اکسیژن، تغییراتpH و نوسانات دمایی( مقاوم بوده و در اکثر ماههای سال با وجود افت دما به تغذیه خود ادامه می دهد.
دانلود پایان نامه ارشد: شبیه سازی عددی سلول خورشیدی مبتنی بر نانو نوار گرافن با استفاده از روش تابع گرین غیرتعادلی
جمعه 99/10/26
1-1- پیشگفتار
انرژی خورشیدی منحصربهفردترین منبع انرژی تجدید پذیر در جهان است و منبع اصلی تمامی انرژیهای موجود در زمین میباشد. این انرژی به صورت مستقیم و غیرمستقیم میتواند به اشکال دیگر انرژی تبدیل گردد[[i]].
به طور کلی انرژی متصاعد شده از خورشید در حدود 3.8e23 کیلووات در ثانیه میباشد. ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی میباشد. با توجه به موقعیت جغرافیایی ایران و پراکندگی روستاهای کشور، استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه های برق رسانی و تولید انرژی در مقایسه با دیگر مدلهای انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حملنقل، نگهداری و عوامل مشابه میباشد[1].
با توجه به استانداردهای بینالمللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳.۵ کیلووات ساعت در مترمربع باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستمهای فتوولتائیک بسیار اقتصادی و مقرون به صرفه است. این در حالی است که در بسیاری قسمتهای ایران، انرژی تابشی خورشید بسیار بالاتر از این میانگین بینالمللی میباشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلووات ساعت بر مترمربع اندازهگیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴.۵ کیلو وات ساعت بر مترمربع است[1].
2-1- تاریخچه سلول های خورشیدی
اثر فوتوولتاییک اوّلین بار در سال 1839 توسط بکویهرل[1]، فیزیکدان فرانسوی، به صورت تجربی نشان داده شد[[i]] . پس از آن چارلز فریتز[2] در سال 1883 توانست اوّلین سلول خورشیدی حالت جامد را بسازد. او نیمههادی سلنیم را با لایهی نازکی از طلا پوشانده بود تا بتواند یک پیوند شکل دهد و با این کار توانسته بود به بازده 1% دست یابد. در سال 1946 راسل اُهل[3] موفّق شد یک سلول خورشیدی با پیوند مدرن بسازد.
با این حال اوّلین سلول خورشیدی کاربردی[4] در سال 1954، در آزمایشگاه بل[5]، ساخته شد. چاپین[6]، فولر[7] و پیرسون[8] برای
ساخت این سلول از یک پیوند p-n نفوذی سیلیکون[9] استفاده کرده توانستند به بازده 6% دست یابند[2].
سلولهای پیشرفتهی اوّلیه با استفاده از ویفر[10]های سیلیکن و ژرمانیوم به دست آمدند. پس از آن سلولهایی ساخته شدند که در آنها از لایههای نازک[11] سیلیکن یا دیگر نیمههادیها به جای ویفر استفاده میشد. هم اکنون علاوه بر این دو نوع سلول خورشیدی از سلولهای متعدّد دیگری چون سلولهای پلیمری، ارگانیک، رنگ دانهای( حسّاس شده با رنگ[12])، چند پیونده و … بهره گرفته میشود.
در این فصل انواع مهم سلولهای خورشیدی، که در سه نسل دستهبندی شدهاند، به شکل مختصر مورد بررسی قرار میگیرند: نسل اوّل (شامل سلولهای کریستالی سیلیکون[13]) نسل دوم( شامل سلولهای گوناگونی که در آنها از لایه های نازک نیمههادی استفاده میشود) و نسل سوم( شامل سلولهایی که طرّاحی آنها به گونه ایست که میتوانند بازدهی فراتر از حدّ شاکلی- کوییزر دست یابند).
3-1- انواع سلول های خورشیدی
1-3-1- نسل اوّل سلول های خورشیدی (سلول های کریستالی سیلیکون)
در این دسته از سلولهای خورشیدی، از ویفرهای سیلیکون به عنوان نیمههادی فعّال استفاده میشود. سیلیکون با گاف انرژی ev1.12 مادّهای بسیار مناسب برای جذب طیف خورشید به حساب میآید. همچنین از نظر فراوانی در طبیعت دومین عنصر به شمار میرود. این بدان معناست که دست یابی به سیلیکون خام هزینهی چندانی نخواهد داشت و نگرانیای هم برای اتمام منابع آن وجود ندارد.
برای دستیابی به هدایت بالا، افزایش طول عمر سلول و جلوگیری از افت بازده( بر اثر بازترکیب حاملها) سیلیکون را به صورت تک کریستال و با کیفیت بالا مورد استفاده قرار میدهند. گاهی نیز برای کاهش هزینه ها از سیلیکون چند- کریستال بهره گرفته میشود.
1-1-3-1- فرآیند رشد کریستالهای نیمه هادی ها
شرایط رشد بلور( کریستال)های نیمههادی که برای ساخت قطعات الکترونیک استفاده میشود بسیار دقیقتر و مشکلتر از شرایط سایر مواد است. علاوه بر این که نیمههادیها باید به صورت کریستالی در دسترس باشند، باید خلوص آنها نیز در محدودهی بسیار ظریفی کنترل شود. مثلا تراکم بیشتر ناخالصیهای مورد استفاده در بلورهای Si امروزی کمتر از 1 قسمت در ده میلیارد است. چنین درجاتی از خلوص مستلزم دقّت بسیار در استفاده و به کارگیری مواد در هر مرحله از فرآیند ساخت است[[i]].
نیمههادیهای تک عنصری Si و Ge از تجزیهی شیمیایی ترکیبهایی مانند GeO2، SiCl4 و SiHCl3 به دست میآیند. پس از جداسازی و انجام مراحل اوّلیهی خالصسازی، مادهی نیمههادی را ذوب کرده و به صورت شمش[1]هایی در میآورند. Si یا Ge به دست آمده بعد از مرحلهی بازپخت[2] به صورت چند بلوری است.
در صورت عدم کنترل فرآیند سرمایش، نواحی بلوری دارای جهتهای کاملا تصادفی خواهند بود. برای رشد بلور فقط در یک جهت، لازم است که کنترل دقیقی در مرز بین مادّهی مذاب و جامد، در هنگام سرد کردن، انجام پذیرد[3].
یک روش متداول برای رشد تک-کریستالها، سرد کردن انتخابی مادهی مذاب است به گونهای که انجماد در راستای یک جهت بلوری خاص انجام پذیرد. برای مثال در نظر بگیرید یک ظرف از جنس سیلیکا حاوی Ge مذاب باشد؛ می توان طوری آن را از کوره بیرون آورد که انجماد از یم انتها شروع شده و به تدریج تا انتهای دیگر پیش رود. با قرار دادن یک دانه[3]ی بلوری کوچک در نقطهی شروع انجماد می توان کیفیت رشد بلور را بالا برد. اگر سرعت سرد کردن به دقّت کنترل شود و مکان فصل مشترک جامد و مذاب به آهستگی در طول مذاب حرکت داده ش.ود، اتمهای ژرمانیوم همراه با سرد شدن بلور به صورت شبکهی الماسی آرایش مییابند. شکل بلور به دست آمده توسط ظرف ذوب تعیین میشود. Ge، GaAs و دیگر بلورهای نیمههادی معمولا با این روش، که روش بریجمن[4] افقی نامیده میشود، رشد داده میشوند. در شکل دیگری از این روش، ناحیهی کوچکی از مادهی بلوری ذوب شده و سپس ناحیهی مذاب طوری به طرف دیگر حرکت داده میشود که در پشت ناحیهی مذاب و در هنگام حرکت آن یک بلور تشکیل شود[3].
یکی از معایب رشد بلور در ظرف مذاب این است که مادهی مذاب با دیوارههای ظرف تماس پیدا میکند و در نتیجه در هنگام انجماد تنشهایی ایجاد میشود که بلور را از حالت ساختار شبکهای کامل خارج میسازد. این نکته به ویژه در مورد Si که دارای نقطهی ذوب بالایی بوده و تمایل به چسبیدن به مواد ظرف ذوب را دارد، مشکلی جدی است. یک روش جایگزین، که این مشکل را برطرف میکند، شامل کشیدن بلور از مذاب در هنگام رشد آن است. در این روش یک دانهی بلوری در داخل مادهی مذاب قرار داده شده و به آهستگی بالا کشیده میشود و به بلور امکان رشد بر روی دانه را میدهد. معمولا در هنگام رشد، یلور به آهستگی چرخانده میشود تا علاوه بر همزدن ملایم مذاب، از هرگونه تغییرات دما( که منجر به انجماد غیر ممکن میشود) متوسط گیری کند. این روش، که روش چوکرالسکی نامیده میشود، به شکل گستردهای در رشد Si، Ge و برخی از نیمههادیهای مرکب استفاده میشود[3].
[1] . Ingot
[2] . Annealing
[3] . Seed
[4] . Bridgman
[i] . بن. جی. استریتمن، غلامحسن روئین تن و سعید صمدی(مترجم)، « فیزیک الکترونیک»، انتشارات دانشگاه علم و صنعت ایران، چاپ ششم، 1387 .
[1] . Becquerel
[2] . Charles Fritts
[3] . Russell Ohl
[4] . Practical
[5] . Bell Laboratory
[6] . Daryl Chapin
[7] . Calvin Souther Fuller
[8] . Gerald Pearson
[9] . Diffused Silicon p-n Junction
[10] . Wafer
[11] . Thin Films
[12] . Dye Sensitized
[13] . Crystalline Silicon Solar Cells
[i] . http://en.wikipedia.org/wiki/Solar_cell
[i]. http://www.irses.ir
پایان نامه : بررسی ارتباط پلی مورفیسم های پروموتر ژن GKN1 با خطر ابتلا به سرطان معده
جمعه 99/10/26
: سرطان معده شایع ترین سرطان در کشورهای آسیایی محسوب میشود و در ایران نیز به عنوان شایع ترین و اولین علت مرگ و میر به دلیل سرطان در میان مردان و دومین علت مرگ و میر در میان زنان است. یکی از عواملی که با سرطان معده ارتباط دارد، تغییر در ترکیب موکوس معده است که سطح اپیتلیال معده را پوشانده است. هدف: یکی از فراوان ترین پروتئینهای موجود در موکوس معده گاستروکین
1 است که توسط ژن GKN1 در انسان کد میشود. این پروتئین در عملکرد طبیعی معده مثل تمایز طبیعی سلولهای اپیتلیال معده، یکپارچگی مخاط و ترمیم سلولهای اپیتلیال معده پس از آسیب نقش مهمی ایفا می کند. بیان ژن GKN1 در سرطان معده کاهش می یابد و از این ژن به عنوان ژن سرکوب کننده تومور در معده نام برده می شود.
مواد و روش ها: با توجه به نقش مهم گاستروکین 1 در اپیتلیوم معده و کاهش بیان ژن GKN1 در سرطان معده و نقش تنظیمی پروموتر در بیان ژن ها، در این مطالعه 52 بیمار مبتلا به سرطان معده و 52 فرد سالم انتخاب شده و پلی مورفیسمهای تک نوکلئوتیدی قرار گرفته در ناحیه پروموتری ژن GKN1 با استفاده از توالی یابی و تکنیک Tetra-primer ARMS PCR بررسی گردید.
نتیجه گیری: نتایج نشان داد که پلیمورفیسم تک نوکلئوتیدی rs 4575760 با خطر ابتلا به سرطان معده ارتباط دارد (032/0=P , 1=df ,9/0-1/0 =%95CI ,42/0=OR). اما پلی مورفیسم تک نوکلئوتیدی rs 4072127 با خطر ابتلا به سرطان معده ارتباط ندارد ( 13/0 =P , 1 =df , 52/4 – 8/0=%95CI , 919/1 =OR).
کلمات کلیدی: سرطان معده، ژن GKN1، پروموتر، پلیمورفیسم تک نوکلئوتیدی، Tetra-primer ARMS- PCR.
دانلود پایان نامه ارشد: بررسی ضریب رفتار قاب خمشی بتنی بهسازی شده با مهاربند همگرا براساس سطح عملکرد
جمعه 99/10/26
1-1- کلیات
نگاهی به خسارتهای ناشی از زلزلههای گذشته نشان میدهد که درصد بالایی از ساختمانهای بتن مسلح که در کشور ساخته شدهاند در برابر زلزله مقاوم نیستند و یا مقاومت کافی و قابل قبولی ندارند. زیرا سازههای بتن مسلح موجود غالباً براساس آیین نامههای قدیمی طراحی شده و اکثراً الزامات آیین نامههای جدید زلزله را ارضا نمیکنند. همچنین ضعفهای اجرایی مزید برعلت شده و ساختمانها را آسیب پذیرتر ساخته است. از این رو، ضرورت تقویت این ساختمانها به خصوص برای مقابله با نیروهای جانبی و با روشهای مقاوم سازی، قابل اعتماد، آسان و سریع، احساس میشود. از آنجایی که تعداد قابل توجهی از ساختمانهای آسیب پذیر قبلاً ساخته شدهاند، افزایش مقاومت لرزهای آنها به شیوههای گوناگون کم و بیش مشکلات اجرایی و تغییر در معماری را به همراه خواهد داشت[12].
هدف اصلی در طراحی لرزهای ساختمانها بر این مبناست که رفتار ساختمان، در مقابل نیروهای ناشی از زلزلههای کوچک بدون خسارت و در محدوده خطی مانده، و در مقابل نیروهای ناشی از زلزلههای شدید، ضمن حفظ پایداری کلی خود خسارتهای سازهای و غیرسازهای را تحمل کند. به همین دلیل مقاومت لرزهای که مورد نظر آیین نامههای طراحی در برابر زلزله است، عموماً کمتر و در برخی موارد، خیلی کمتر از مقاومت جانبی مورد نیاز برای حفظ پایداری سازه در محدوده ارتجاعی، در یک زلزله شدید است. بنابراین رفتار سازهها به هنگام رخداد زلزلههای متوسط و بزرگ وارد محدوده غیر ارتجاعی میگردند و برای طراحی آنها نیاز به یک تحلیل غیر ارتجاعی است، ولی به دلیل پرهزینه بودن این روش و عدم گستردگی برنامههای تحلیل ارتجاعی و سهولت روش ارتجاعی، روشهای تحلیل و طراحی متداول، براساس تحلیل
ارتجاعی سازه و با نیروی کاهش یافته زلزله صورت میگیرد. کاهش مقاومت سازه از مقاومت ارتجاعی مورد نیاز عموماً با استفاده از ضرایب کاهش مقاومت انجام میشود. بدین منظور آیین نامههای طراحی لرزهای کنونی با شیوه ذکر شده، نیروهای لرزهای برای طراحی ارتجاعی ساختمان را از یک طیف خطی که وابسته به زمان تناوب طبیعی ساختمان و شرایط خاک محل احداث ساختمان است به دست می آورند و برای ملحوظ کردن اثر رفتار غیر ارتجاعی و اتلاف انرژی بر اثر رفتار هیسترتیک، میرایی و اثر مقاومت افزون سازه، این نیروی ارتجاعی را به وسیله ضریب کاهش مقاومت (ضریب رفتار) به نیروی طراحی تبدیل میکنند [13].
در این پژوهش یکی از روشهای مقاوم سازی لرزهای ساختمانهای بتن مسلح که اخیراً در کشور معمول شده مورد مطالعه قرار گرفته است. این روش که اضافه کردن بادبندهای فولادی به سازه قابی بتن مسلح است. با جزئیات مختلف محل اتصال بادبندی به قاب قابل اجرا است.
1-2- هدف
به منظور افزایش مقاومت لرزهای سازههای قابی، اغلب بادبندهای فولادی یا دیوارهای برشی مورد استفاده قرار میگیرد. استفاده از دیوارهای برشی در سازههای قابی بتن مسلح و بادبندهای فولادی در سازههای قابی متداول است. با عنایت به سهولت اجرا و هزینه نسبتاً پایین بادبندی فولادی، در سالهای اخیر از این سیستم در سازههای بتن مسلح استفاده شده است. با توجه به نظر کارفرما و انتظاراتی که از عملکرد ساختمان بعد از زلزله میرود، برای مهندس بهساز مشخص میشود که به عنوان مثال اجزای سازهای و غیرسازهای باید تا چه حد دچار خرابی شوند و تا چه حد کارایی خود را حفظ کنند.
طراحی و بهسازی در FEMA و دستورالعمل بهسازی [3] بر مبنای سطوح عملکرد است ولی طراحی بر مبنای سطوح عملکرد روشی جدید است که هنوز بسیاری با آن آشنا نیستند. سطح عملکرد ساختمان بر اساس میزان ترک خوردگی یا خرابی اجزای سازهای (Structural) و غیر سازهای (Non Structural) تعریف میشود.
در این پژوهش ضریب رفتار سازه بر اساس سطوح عملکرد موجود در دستورالعمل بهسازی برای قاب خمشی بتنی مسلح، مقاوم شده با مهاربندهای هشتی محاسبه میگردد. لازم به ذکر است که در تحقیقات گذشته تغییر مکان هدف که برای انجام تحلیل استاتیکی غیرخطی (Push-over) نیاز است، بر اساس معیارهای خرابی کلی سازه مثلاً بر اساس آئین نامه 2800 [10] برای سازههای با 7/0> T برابر h 036/0 و برای سازههای با 7/0T> برابر h029/0 که، h ارتفاع سازه است، در نظر گرفته شده است در حالی که در طراحی بر اساس سطح عملکرد این مقدار با فرمول بندی خاصی که در فصل سوم به طور کامل توضیح داده خواهد شد بیان میگردد.
1-3- تاریخچه تحقیقات
به دلیل گستردگی موضوع این پژوهش تاریخچه تحقیقات در دو بخش بیان میگردد. در بخش اول در مورد تاریخچه مقاوم سازی قابهای خمشی بتنی توسط بادبند و در بخش دوم در مورد تحقیقات انجام شده روی ضریب رفتار قابهای خمشی بتنی با بادبند توضیح داده میشود.
بررسی و مطالعه قابهای بادبندی شده از دیرباز مورد توجه پژوهشگران بوده است، ولی مطالعه قابهای بتن مسلح بادبندی شده تقریباً جدید بوده و پیشینه تحقیقاتی چندانی ندارد. پژوهشهایی که در ادامه به صورت فهرست وارد در دو بخش بیان میگردد غالباً جدید بوده، و اکثراً زوایای دیدی غیر از موضوع پژوهش حاضر در آنها مد نظر بوده است.
1-3-1- تاریخچه مقاوم سازی قابهای خمشی بتنی توسط بادبند
در سال 1980، سوگانو وفوجی مورا [41] [Csugane and fujimura] روی تعدادی قابهای بتن مسلح بادبندی شده با باد بندهای K و X و همچنین قابهای مشابه مقاوم شده با میان قابهای بنایی و بتنی آزمایشهایی را هدایت کردند. هدف از این بررسیها تعیین میزان تأثیر هر یک از سیستمها در افزایش مقاومت درون صحفهای و شکل پذیری قابها بود.
در سال 1981 هیگاشی و اندو [27] (higashi and Endo) و نیز کاواماتا و اهنوما [28] (kavamata and ohnuma) بر روی استفاده از باد بندهای هم مرکز و خارج از مرکز د ر قابهای بتنی مطالعاتی انجام دادند. نتایج امکان استفاده موثر از این روشهای مقاوم سازی را نشان داد.
در سال 1984 هیگاشی، اندو و شیمیزو [26] higashi, Endo and shimizu انواع روشهای مقاوم سازی قابهای بتن مسلح موجود را با انتخاب مدلهایی از قاب یک دهانه و سه طبقه مقاوم شده با روشهای مخلتف، مورد آزمایش قرار دادند. رفتار تمام نمونهها به صورت مدلهای قاب غیر الاستیک تحلیل شده و رابطه بار- تغییر مکان به دست آمده از تحلیل با نتایج آزمایش همخوانی خوبی نشان داد. روشهای مقاوم سازی به کار رفته در این پژوهش عبارت بودند از پانلهای پیش ساخته بتنی، بادبندهای فولادی قاب فولادی و دیوارهای میانقاب.
در سال 1987 و 1991 بوش و همکاران [21و20] (Bush et-al) سیستم قاب فولادی بادبندی شده پیچیدهای را در یک قاب بتنی مورد استفاده قرار داده و به افزایش قابل توجهی در مقاومت برشی درون صحفه قاب دست یافتند.
در سال 1988 اوهیشی و همکاران [34] (Ohishi et-al) و سگی گوچی و همکاران [39] (sekiguchi et-al) بررسیهای مشابهی روی استفاده از باد بندهای V شکل انجام دادند.
در سال 1990 بادوکس و جیرسا [19] (badoux and jirsa) استفاده از بادبندهای فولادی برای افزایش مقاومت لرزهای قابهای بتن مسلح را مورد آزمایش قرار دادند این پژوهش یک مطالعه تحلیلی است که برای درک رفتار قابهای بادبندی شده تحت بارگذاری سیکلی جانبی به ویژه برای قابها با ستونهای کوتاه ضعیف انجام شده است. کمانش غیرالاستیک بادبندها بررسی شده و روش اصلاح تیرهای یک قاب بادبندی شده با ستونهای کوتاه ضعیف تشریح شده است.
پژوهشگران به این نتیجه رسیدهاند که باد بندی فولادی مزایای غیره سازهای فراوانی بر دیگر طرحها داشته و میتواند با کمترین اخلال در کاربری نصب شود همچنین فضای زیادی را هم اشغال نمیکند. از جنبه سازهای هم بادبندی فولادی برای مقاوم سازی جانبی یا سخت کردن ساختمانهای بتن مسلح چند طبقه خیلی مناسب است. سیستم بادبندی بایستی برای پاسخ الاستیک طرح و برای رفتار شکل پذیر دیتیل شود. برای محدود کردن کمانش غیرالاسیتک بایستی نسبت لاغری بادبندها پایین نگه داشته شود. استفاده از با دبندهایی که یا کمانه نمیکنند (لاغری خیلی کم) و یا به صورت الاستیک کمانه میکنند (لاغری خیلی زیاد) بایستی مورد توجه قرار گیرد. در قابهای با ستونهای ضعیف و تیرهای قوی ترکیب بادبندی فولادی با اصلاح تیر میتواند رفتار قاب را به طرز قابل توجهی بهبود بخشد.
در سال 1990 گول ولی [24] (Goel and lee) مقاوم سازی لرزهای سازههای بتن مسلح به کمک سیستم بادبندی فولادی شکل پذیر را مورد مطالعه آزمایشگاهی قرار دادند. در این پژوهش روی مدلی به مقیاس 3: 2 از یک قاب بتن مسلح دو طبقه مقاوم شده با سیستم بادبندی فولادی شکل پذیر، بار سیکلی اعمال شد. نتایج آزمایش نشان دادند که قاب مقاوم شده از خود پایداری و نیز حلقههای هیسترزیس کاملی بروز میدهد. همچنین شکل پذیری و اتلاف انرژی خوبی تحت تغییر مکانهای سیکلی بدست آمد……