دانلود پایان نامه : پیش بینی تقاضا برای فرآورده های سوختی نفتی بر مبنای روش های فرا ابتکاری علف های هرز، توده ‌ذرّات ‌و شبکه‌های عصبی مصنوعی

طی دهه های اخیر از انرژی به عنوان یكی از عوامل مهم تولید یاد شده است، به طوری كه در كنار سایر عوامل تولید، نقش تعیین كننده ای در حیات اقتصادی كشورها داشته و با توسعه و پیشرفت اقتصادی، اهمیت آن به طور فزاینده‌ای افزایش یافته است  وابستگی روزافزون زندگی بشر به انرژی موجب شده است تا این بخش به طور بالقوه و بالفعل در كاركرد بخشهای مختلف  اقتصادی كشورها نیز نقش چشم گیری ایفا كند. “بهبودی و همكاران، 1388”

 

رشد و توسعه اقتصادی، از اهداف اصلی سیاست گذاران اقتصادی محسوب می شود. پژوهشهای متعدد پژوهشگران در سطح جهان نشان داده است كه سرعت روند رشد و توسعه اقتصادی در كشورهای جهان تا حدود زیادی به سطح مصرف كارآی انرژی بستگی دارد. “مزرعتی، 1378”

 

بهبود سطح زندگی مردم و مكانیزه شدن تولید به منظور ارتقاء سطح بهره وری كار، افزایش سریع مصرف انرژی را موجب می شود، البته افزایش سریع مصرف انرژی در مراحل اولیۀ رشد اقتصادی اتفاق می افتد. در مراحل بعدی رشد، با پدیدار شدن اثرات سوء زیست محیطی و نیز ارتقای آگاهی ها و حساسیت های عمومی، مباحث رشد پایدار و مسایل زیست محیطی اهمیت بیشتری پیدا كرده و روند افزایش مصرف انرژی به دلیل استفاده بهینۀ آن كاهش می یابد. “بهبودی و همکاران ، 1388”

 

علی رغم روند رو به رشد و توسعۀ استفاده از انرژی های نو مانند انرژی هسته ای در سطح جهان، هنوز عمده ترین بخش ازتقاضای انرژی سوخت فسیلی تأمین می شود که از جمله مهم ترین آن نفت خام است. پیش بینی تقاضا انواع مختلف حامل های انرژی از مباحثی است که به ویژه بعد از جنگ جهانی دوم مورد توجه محافل علمی و اقتصادی جهان واقع گردیده است. از اوایل دهۀ 1970 وقتی انرژی توجه سیاستمدران را در نتیجه ی اولین بحران نفتی به خود جلب کرد، تحقیق وبررسی روی تقاضای آن به منظور غلبه بر فهم محدود از ماهیت تقاضای انرژی، به شدت گسترش یافت ” پیندینگ ، 1979″. امروزه نفت به عنوان یك كالای اقتصادی سیاسی نقش مهمی در تحولات جهان ایفا می‌كند و تا زمانی كه منبع انرژی دیگری یافت نشود، هم چنان اثرات دامنه داری بر اقتصاد جهان خواهد داشت و تقریباً تمام مصنوعات بشر در مراحلی از تولید تا توزیع ازمصارف انرژی گرفته تا حمل و نقل، به آن وابسته اند. به گفته دانیل یرگین ، “هنگامی كه به قرن بیست و یكم نگاه می كنیم، یك بشكه نفت، به اندازه پیشرفت در علوم كامپیوتری مایۀ تسلط و برتری است و نفت مانند گذشته هم چنان مولّد ثروت های عظیم برای افراد، شركت ها و تمامی یك كشور است”. از همین رو سیاستگذاری نفتی كشورهای نفت خیز به واقع بخش عمدهای از سیاست گذاری این كشورها را تشكیل می دهد و در این كشورها هرگونه برنامه ریزی مستقیم یا غیرمستقیم متأثر ازسیاست های نفتی است. “اسلامی نژاد،1386”

 

در دهه هاى اخیر، از انرژى به عنوان یكى از عوامل مهم تولید یاد شده است، به طورى كه دركنار سایر عوامل تولید، نقش تعیین كننده اى

 

مقالات و پایان نامه ارشد

 درحیات اقتصادى كشورها داشته و با توسعه و پیشرفت اقتصادى، اهمیت آن به طور فزاینده اى افزایش یافته است. وابستگى روزافزون زندگى بشر به انرژى موجب شده است تا این بخش به طور بالقوه و بالفعل، دركاركرد بخش هاى مختلف اقتصادى كشورها نیز نقش چشمگیرى ایفا كند ” بهبودى و همكاران، 1388 “.

 

تأمین امنیّت عرضۀ انرژی در دنیا ، ازمسائل راهبردى پیش روى همۀ دولت ها است. امروزه درایران ، تلاش ها در بخش مدیریت سمت عرضۀ انرژی متمركز است و كمتر به مدیریت سمت تقاضای انرژی توجه مى شود، درحالی كه مدیریت تقاضای انرژی و تلاش براى استفادۀ بهینه از انرژی در همۀ كشورهای پیشرفته دنیا، از مهم ترین عوامل پیشرفت صنعتی پایدار بوده است ” مبینى دهكردى وهمكاران، 1388″.

 

ایران از منابع غنی و گسترده انرژی، مخازن بزرگ نفتی و گازطبیعی، معادن عظیم زیرزمینی و پتانسیل بالقوه انرژی برخوردار است، پیش بینى مصرف انرژی مى تواند در تبیین سیاست هاى بخش انرژی، كمك مؤثرى كند. همچنین از آنجایى كه مدتی است موضوع محدود كردن مصرف انرژی به ویژه فرآورده هاى نفتی مانند بنزین، در رأس سیاست هاى اقتصادی دولت قرار گرفته است و مشكلات ناشی از افت فشار گازطبیعی، مانند قطع گاز در استان هاى مختلف یا كاهش تولید برق در كارخانجاتی كه سوخت اصلی آنها، گاز طبیعی است، گاهى در كشور ایجاد می شود و كمبود منابع انرژی دیگر نیز گاهى برای بخش هاى مختلف اقتصاد، مشكل ساز مى شود، پیش بینى و الگوسازى مصرف انرژی، می‌تواند رهنمود مناسبی برای سیاستگذاران بخش انرژی و اقتصاد كشور باشد ” آماده وهمكاران ، 1388 “

 

از طرفی تأثیر نفت و حامل های انرژی به ویژه بنزین ، گازوئیل و … در اقتصاد کشور برکسی پوشیده نیست، بنابراین تحقق توسعه پایدار ، در گرو آن است که تولید و بهره برداری از انرژی همراه با سایر نهادها نظیر تکنولوژی، منابع انسانی ، مواد اولیه ، منابع مالی و… بطور هماهنگ و هم ساز برنامه ریزی شود. مصرف فراورده هایی همچون نفت سفید[3]  ، نفت کوره[4] ، بنزین موتور[5] و نفت گاز[6] با در نظر گرفتن اهمیّت آن در بخش های مختلف ، نقش اساسی در رشد و توسعۀ اقتصادی کشورها ایفا می‌کند . بررسی مصرف آتی تقاضای فرآورده های نفتی در جهت شناخت دقیق و صحیح از ساختار رفتاری مصرف ، به منظور برنامه ریزی دقیق در راستای تحقق اهداف مورد نظر، امری ضروری است. آگاهی از میزان تقاضای نفت سفید ، نفت کوره و  بنزین موتور و نفت گاز به منظور اتخاذ تصمیمات صحیح برای برنامه ریزی و سیاست گذاری های مناسب از اهمیّت ویژه ای برخوردار است این مقوله در بخش های مختلف (حمل و نقل ، صادرات و….) سهم قابل توجه ای از مصرف این سه نوع محصول را دارد که از اهمیّت به سزایی برخوردار است . از طرفی در تجزیه و تحلیل تقاضای حامل‌های انرژی مدل های مختلفی مورد استفاده قرار می گیرد ، که برخی فقط برای جهت مطالعه حامل های انرژی طراحی شده و برخی ارتباط آنها را با یکدیگر بررسی می کند.

 

روش هاى آمارى و اقتصاد سنجى، درمورد پیش بینى سرى هاى زمانى عملكرد خوبى داشته است، اما محدودیت هایى نیزدارد، ازجمله اینكه ممكن است در این گونه روش ها، فرم تبعى متغیّرهاى مستقل و وابسته در صورت عدم شناخت كافى به درستى تصریح نشود. علاوه براین، داده هاى پرت ممكن است به تخمین اُریب پارامترهاى الگو بیانجامد. درضمن، بیشتر الگوهاى سرى زمانى، خطّى است و بنابراین در تشریح رفتارهاى غیرخطّى ناتواناست ” ابریشمى و همكاران، 1389 “. درپژوهش هاى اخیر، از الگوهاى هوش مصنوعى به طور متداول به عنوان ابزار تقریبى غیرخطّى استفاده شده است، به طورى كه مى توان با استفاده از آن بر مشكلات فوق چیره شد.”جوادپور وكناپ، 2003 “.

 

هدف پژوهش حاضر، كاربرد الگوهاى هوش مصنوعى، یعنى الگوهاى شبكه هوش مصنوعی، الگوریتم توده ذرّات و الگوریتم علف های هرز، در پیش بینى مصرف انرژى بخش حمل ونقل كشور است تا در پایان بتوان میزان كارایى این روش ها را در پیش بینى مصرف انرژى مقایسه كرد.

 

1.2. بیان مسأله

 

شاید اغراق نباشد اگر گفته شود که در تمام  دوره های زندگی بشر، نفت ماده شناخته شده ای بوده است. اما در طول چندین دهۀ گذشته ، حیاتی بودن آن برای تداوم زندگی اقتصادی تردید ناپذیر شده است. حدود 75 درصد از کل منابع نفت موجود جهان در خاورمیانه قرار دارد و  ایران یکی از 5 کشور بزرگ مالک ذخایر نفتی در جهان است. نفت از مهم ترین منابع کشور محسوب می شود و مسأله پیش بینی فرآورده های سوختی نفتی در تعیین سیاست بهره برداری از منابع نفتی از اهمیّت ویژه ای برخوردار است. از طرف دیگر  پیش بینی و الگو های آن  یکی از مباحث مهم و حیاتی مدیریت درزمینه برنامه ریزی و تصمیم گیری است که امروزه علاقه فراوانی در استفاده از سیستم های هوشمند به منظور بهبود کیفیّت تصمیم های مدیریتی و کاهش خطاهای پیش بینی به دلیل قابلیت بالای این سیستم ها بوجود آورده است. ایران از جمله کشورهایی است که اساس اقتصاد آن بر درآمد صادرات فراورده های سوختی نفتی بنا شده است. ارتباط حجم و ارزش صادرات نفت و گاز و رشد اقتصادی به منزلۀ افزایش ظرفیّت های اقتصادی یکی از  موضوعات مهم و قابل توجّه برای مراکز تحقیقاتی و برنامه ریزی است. همچنین در دنیای پیچیدۀ امروز پیش بینی و مدیریت تقاضا نقش مهمی در برنامه ریزی حوزۀ انرژی کشورهای نفت خیز دارد ، این بدان دلیل است که نفت یکی از پارامتر و عوامل بسیار مهم در امنیت اقتصادی این کشورها محسوب می شود. براین اساس تخمین تقاضای نفت و فرآورده های سوختی نفتی و تحلیل آن در طول زمان می تواند نقش قابل توجّهی در نیل به اهداف ایفا کند. از طرفی تخمین و پیش بینی میزان تقاضای فرآورده های سوختی نفتی از مدل و تکنیک های مختلفی می تواند صورت بگیرد. اما با توجه به تکنیک های زیادی که ارائه شده است آیا می توان تکنیکی را برتر ، در دقّت برآوردها شناسایی کرد؟

 

در سال های اخیر شاهد حضور موفق روش های فرا ابتکاری الگوریتم بهینه سازی ازدحام ذرّات[7] و شبکه های عصبی مصنوعی[8] بوده‌ایم. در این تحقیق سعی شده است تا با استفاده از روش های جدید و نیرومند به پیش بینی فرآورده های نفتی بپردازیم وکیفیّت این روش ها را با یکدیگر مقایسه نمائیم. همچنین با پیشرفت و توسعۀ روش های غیر خطّی همچون شبکه های عصبی ، شبکه های عصبی فازی[9]، الگوریتم ژنتیک[10]، الگوریتم کولونی مورچگان[11]، الگوریتم بهینه سازی ازدحام ذرّات ، الگوریتم بهینه سازی علف های هرز[12] و … می توان از این روش ها برای پیش بینی تقاضا استفاده نمود.

 

[1]. Pinding

 

[2]. Daniel Yergin

 

[3]Kerosene

 

[4]Mazut

 

[5]Gasoline

 

[6]Diesel fuel

 

[7]Particle Swarm Optimization

 

[8]Artificial Neural Networks

 

[9]Fuzzy Neural Network

 

[10]Genetic Algorithm

 

[11]Ant Colony Algorithm

 

[12]Invasive Weed Optimization

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی

درخواست بد!

پارامتر های درخواست شما نامعتبر است.

اگر این خطایی که شما دریافت کردید به وسیله کلیک کردن روی یک لینک در کنار این سایت به وجود آمده، لطفا آن را به عنوان یک لینک بد به مدیر گزارش نمایید.

برگشت به صفحه اول

Enable debugging to get additional information about this error.