دانلود پایان نامه ارشد درباره مخازن نرم افزاری

آنچه که بین تمام علوم مشترک است، حجم وسیعی از اطلاعات و داده به شکل­های مختلف است، که همراه با پیشرفت و وسعت علوم بزرگتر و ارزشمندتر می­شود. با رشد سریع علوم کامپیوتر و استفاده از آن در چند دهه اخیر، تقریبا همه سازمان­ها در پروژه­های مختلف خود حجم عظیمی داده در پایگاه­های داده ذخیره می­کنند. این سازمان­ها و کسانی که به نوعی در پروژه­ها سهیم هستند به فهم این داده­ها و بهتر بگوییم کشف دانش نهفته در آن نیازمندند. این نیاز، باعث به­وجود آمدن حوزه جدید میان رشته­ای کشف دانش و داده­کاوی[1] شده است، که حوزه­های مختلف همچون پایگاه داده، آمار، یادگیری ماشین را برای کشف دانش ارزشمند نهفته در اطلاعات و داده­ها را با هم تلفیق می­کند. اصطلاح Data­ Mining همان­طور که از ترجمه آن به معنی داده­کاوی مشخص می‌شود، به مفهوم استخراج اطلاعات نهان، و یا الگوها وروابط مشخص در حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ است.

هر نرم­افزار در طول فرآیند­تولید و پس از آن، انبوهی از اطلاعات ­و مستندات دارد که قابل کاوش و استفاده­ مفید است. این داده­ها معمولا در پایگاه­ داده­هایی به­نام مخازن نرم­افزاری[2] ذخیره و نگهداری می­شوند. مخازن نرم­افزاری نمایش دقیقی از مسیر­تولید یک سیستم ­نرم­افزاری ارائه می­دهند]1 .[هدف ازکاوش مخازن نرم­افزاری[3]MSR استفاده هوشمند از تحلیل داده­های نهفته در آن­ها برای کمک به

 

مقالات و پایان نامه ارشد

 تصمیم­گیری های بهتر و سریعتر در پروژه تولید و پشتیبانی آن­ها است. آن­چه که در اینجا مورد توجه این تحقیق است، استخراج اطلاعات مهم برای همه ذینفعان پروژه نرم­افزاری است. این اطلاعات از مجموعه داده­های مرتبط با خطا­های رخ داده در طول تولید و پشتیبانی پروژه استخراج می شود.

در سال­های گذشته مدل­های مختلفی با استفاده از الگوریتم­های داده­کاوی، تشابه متن و دسته­بندی و خوشه­بندی داده­ها ارائه شده. اما از آن­جا که جستجو و استخراج اطلاعات از میان داده­های متنی نیازمند روشی هوشمند برای تطبیق جنبه­های معنایی و دستوری است، نیاز به مدل­هایی که از الگوریتم­ها معنایی استفاده­کنند وجود دارد.در تحقیق­های مورد مطالعه این نیاز حس می­شود.

 

 

 

سعی بر این شده که با استفاده از الگوریتم معنایی برپایه مجموعه تشابه جملات[4]بر پایه LCS[5]]3[ و تشابه کلمات (SOC-PMI[6] )]3[، روی مستندات ذخیره­ شده در مخازن خطای نرم­افزار، مانند راه­حل­های ارائه ­شده برای خطا­های مشابه مدل­های قبلی را تکمیل­کرده و جوابی بهینه و سریع­تر برای خطای پیش آمده پیدا کنیم. همچنین می­توان زمانی تخمینی نیز برای تصحیح خطا پیش­بینی کرد تا راهنمای تیم توسعه و ذینفعان دیگر نرم­افزار باشد. همچنین دید بهتری نسبت به روند پیشرفت و تکامل نرم­افزار مورد نظر ارائه ­شود.

 

2.1. تعریف مسئله

یکی ­از مراحل مهم و اساسی در مهندسی ­و تولید نرم­افزار مرحله یافتن و رفع خطا­های موجود در نرم­افزار است. این مرحله از تولید نرم­افزار جزء وقت­گیرترین و پرهزینه ­ترین مراحل به­ حساب  می­آید]4[. سال­هاست که دانش داده­کاوی و استخراج دانش به کمک مهندسین نرم­افزار آمده­است. رفع خطا در فرآیند تولید بسته به مدل توسعه نرم­افزار چندین بار انجام می­گیرد. خطا­ها و مشکلات برطرف ­شده معمولا به روش­های مختلف تحت عنوان مخازن خطای نرم افزار، مستند­سازی و ذخیره می­شود. این مخازن منابع عظیم دانش هستند، که کمک بزرگی در تسریع زمان تولید نرم­افزار و پایین­آوردن هزینه­ها خواهد­بود]5[. روش­هایی نیاز­است که این دانش و اطلاعات مفید استخراج شود. در این تحقیق روشی برای سرعت بخشیدن به رفع­خطای جدید با استفاده از اطلاعات موجود در مخازن خطای نرم­افزار، ارائه شده­است. مدل­های زیادی تا به­حال ارائه­شده که یا مکمل هم بوده یا از الگوریتم­های جدید استفاده شده­است. مدل­های پیشنهادی با استفاده از تشابه متن همگی از الگوریتم­های معمولی و ساده استفاده کرده اند. در این مدل ها به این نکته مهم کمتر توجه شده که مخازن حجم بالا و پیچیده­ای از اطلاعات را شامل می­شوند، که بعضاً تشابه بین کلمات و معانی مختلف یک جمله نتیجه­گیری را سخت­تر می­کند. پس نیاز به الگوریتم­های معنایی در بررسی تشابه متن احساس می­شود. همچنین باید به این نکته مهم توجه کرد که الگوریتم معنایی انتخاب ­شده بهینه است و قادر باشد میان این حجم اطلاعات که از سوی کاربران مختلف ثبت می­شود، بهترین جواب با تشابه بیشتر را انتخاب کند. اگرچه تا به­حال روش­های بسیاری برای تکمیل مخازن خطا و استفاده از دانش نهفته در آن صورت­گرفته اما می­توان گفت که ضرورت اهمیت به تشابه معنایی بین داده­ها در نظر گرفته نشده ­است. در این تحقیق سعی شده که این ضعف در جستجو و بهره­گیری دانش نهفته در این مخازن داده پوشش داده ­شود.

مدل ارائه ­شده در اینجا ابتدا لیستی از خطا­های مشابه خطای جدید با استفاده ازیک الگوریتم تشابه معنایی مناسب، با توجه به اطلاعات متنی ذخیره­شده ارائه می­دهد. در مرحله بعد این خطا­ها براساس چرخه ­عمر خطا با استفاده از روش خوشه­بندی K-means، خوشه بندی می­شوند.

همچنین میانگین تشابه هر دسته به خطای جدید، گروه منتخب را مشخص می کند. خطاهای موجود در این گروه، راه حل­های پیشنهادی برای هر کدام، کمکی برای تسهیل و تسریع در رفع خطا است و میانگین طول­عمر گروه تخمینی بر پیچیدگی و زمان حل­مشکل خواهد بود.

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی

درخواست بد!

پارامتر های درخواست شما نامعتبر است.

اگر این خطایی که شما دریافت کردید به وسیله کلیک کردن روی یک لینک در کنار این سایت به وجود آمده، لطفا آن را به عنوان یک لینک بد به مدیر گزارش نمایید.

برگشت به صفحه اول

Enable debugging to get additional information about this error.