دانلود پایان نامه ارشد : روابط متقابل بخش انرژی و اقتصاد كلان (رویكرد سیستم دینامیك)

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته معارف اسلامی واقتصاد

 

عنوان : روابط متقابل بخش انرژی و اقتصاد كلان (رویكرد سیستم دینامیك)

 

دانشگاه امام صادق

 

دانشكده معارف اسلامی و اقتصاد

 

پایان‌نامه دوره كارشناسی ارشد رشته معارف اسلامی واقتصاد

 

 

 

روابط متقابل بخش انرژی و اقتصاد كلان

 

(رویكرد سیستم دینامیك)

 

 

 

استاد راهنما:

 

دكتر داود منظور

 

 

 

استاد مشاور:

 

دکتر مهدی صادقی

 

 

 

تابستان ١٣٨٧

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چكیده

در این تحقیق در پی آن هستیم تا با استفاده از روش مدل‌سازی پویا، مدلی كلان انرژی در اقتصاد ایران طراحی نماییم. بخش‌های عمده این مدل عبارتند از بخش تولید شامل تولید ناخالص ملی، بخش مصرف شامل مصرف بخش خصوصی و دولتی، بخش مصرف انرژی شامل مصارف انرژی در بخش‌های صنعتی، كشاورزی و مسكونی و بخش سرمایه‌گذاری شامل سرمایه‌گذاری در بخش انرژی و سرمایه‌گذاری در سایر بخش‌های اقتصاد.

در مدل طراحی شده، روابط علی ـ معلولی بین بخش انرژی و بخش‌های واقعی اقتصاد با استفاده از روش مدل‌سازی پویا شبیه‌سازی شده و سپس پارامترهای مدل با روش سابقه تاریخی نتایج مطلوب، كالیبره گردیده‌اند. پس از آن از طریق سه سناریو اثرات تغییر قیمت حامل‌های انرژی بر مصارف برق، گاز و نفت و همچنین میزان سرمایه‌گذاری در بخش‌های برق، گاز و نفت و رشد اقتصاد مورد بررسی قرار گرفته است. سه سناریوی فوق عبارتند از: الف) تثبیت قیمت حامل‌های انرژی، ب) افزایش قیمت حامل‌های انرژی با توجه به نرخ تورم، ج) تعیین قیمت حامل‌های انرژی با توجه به قیمت تمام شده و افزایش آنها با توجه به تورم. هر یك از این سناریوها چه اثراتی در پی خواهند داشت؟

مقایسه نتایج این سه سناریو نشان می‌دهد كه هر سه سناریو مصرف و سرمایه‌گذاری در بخش انرژی را با شدتهای متفاوتی كاهش می‌دهند كه شدت آنها از سنایوری الف تا ج بیشتر می‌گردد.

همچنین به این نتیجه رسیدیم كه سه سناریو بر رشد اقتصاد اثرات متفاوتی دارند، بدین ترتیب كه سناریوی ب رشد اقتصاد را از دو سناریوی دیگر در بلندمدت بیشتر افزایش می‌دهد. سناریوی ج در كوتاه مدت رشد اقتصاد را بیشتر از دو سناریوی دیگر افزایش می‌دهد ولی در بلندمدت اثر كمتری نسبت به دو سناریوی دیگر دارد.

 

كلیدواژه‌ها:

مدلسازی پویا، شبیه سازی، مدل كلان اقتصادی، مدل كلان انرژی

فهرست اجمالی

فصل 1-    كلیات تحقیق.. 1

فصل 2-    آشنایی با تحلیل پویایی‌شناسی سیستمی.. 6

فصل 3-    مقایسه تحلیل پویایی‌شناسی سیستمی با اقتصادسنجی و بهینه‌سازی   31

فصل 4-    مروری بر مدل‌های کلان انرژی در جهان و ایران.. 66

فصل 5-    ساختار مدل پیشنهادیو تخمین اولیه پارامترها.. 99

فصل 6-    کالیبراسیون پارامترها، بررسی نتایج و تحلیل حساسیت مدل   132

فصل 7-    جمع بندی و پیشنهادها.. 159

فصل 8-    ضمیمه الف: مفاهیم مدل و مدل‌سازی و جایگاه روش پویایی شناسی سیستمی   167

فصل 9-    ضمیمه ب: مدل‌سازی پویایی شناسی سیستمی در نرم افزار ithink یا STELLA  183

فهرست تفصیلی

فصل 1-    كلیات تحقیق.. 1

1-1-       كلیات تحقیق.. 2

١-١-١-         تعریف مسأله  2

١-١-٢-        سؤالات اصلی تحقیق  3

١-١-٣-        سابقه و ضرورت انجام تحقیق  3

١-١-٤-        فرضیه‌ها 4

1-1-5-       هدف‌ها 4

١-١-٦-        روش انجام تحقیق  5

١-١-٦-١-        روش و ابزار گردآوری اطلاعات   5

١-١-٧-        قلمرو تحقیق (زمانی، مكانی) 5

فصل 2-    آشنایی با تحلیل پویایی‌شناسی سیستمی.. 6

2-1-       آشنایی با تحلیل پویایی‌شناسی سیستمی.. 7

2-1-1-       مراحل مختلف نظری تدوین مدل و فرایند مدل‌سازی پویایی‌شناسی سیستمی   10

2-1-2-       نمودار علّی ـ معلولی مدل‌های ساده تک حلقوی و مدل‌های چند حلقوی   15

2-1-3-       تعریف چند اصطلاح  17

2-1-4-       نحوه نمایش مدل  18

2-1-4-1-       نمودار علی ـ معلولی  18

2-1-4-2-       نمودار حالت جریان  18

2-1-4-3-       نمایش مدل به صورت ریاضی  19

2-1-5-       رویکردهای مختلف تحلیل پویایی‌شناسی سیستمی به مسأله تخمین پارامتر  19

2-1-5-1-       مکتب کلاسیک   20

2-1-5-2-       مکتب تمایل آماری  25

2-1-6-       کالیبراسیون در مدل‌های تحلیل پویایی‌شناسی سیستمی   25

2-1-6-1-       روش‌های ابتکاری کالیبراسیون  26

2-1-6-2-       بررسی تطابق مدل با رفتار تاریخی در کالیبراسیون با استفاده از آمار‌های موجود 28

2-1-6-3-       بررسی تطابق مدل با ساختار آن  28

فصل 3-    مقایسه تحلیل پویایی‌شناسی سیستمی با اقتصادسنجی و بهینه‌سازی   31

3-1-       مقایسه تحلیل پویایی‌شناسی سیستمی با اقتصادسنجی.. 32

3-2-       محدودیت‌های مدل سازی اقتصادسنجی.. 45

3-2-1-       تفاوت در منابع اطلاعاتی   52

3-2-2-       تفاوت در درجة سختی   54

3-2-3-       تفاوت در ساختار مدل  55

3-2-4-       تفاوت در نوع معادلات   56

3-2-5-       تفاوت در شکل تابع  56

3-2-6-       تفاوت در انعکاس تأخیرها 57

3-2-7-       تفاوت در تخمین پارامتر  57

3-2-8-       تفاوت در نحوه اعتبارسنجی   58

3-2-9-       تفاوت در هدف   59

3-2-10-     استفاده از تحلیل پویایی‌شناسی سیستمی در مدل‌های اقتصادی ـ آری یا خیر؟  62

فصل 4-    مروری بر مدل‌های کلان انرژی در جهان و ایران.. 66

4-1-       مروری بر تحقیقات کلان انرژی در جهان. 67

4-1-1-       سیستم مدل‌سازی ملی انرژی در آمریكا ،” NEMS”  67

4-1-1-1-       هدف مدل  67

4-1-1-2-       موضوعات قابل اجراء در مدل  68

4-1-1-3-       ساختار كلی مدل  68

4-1-1-4-       ساختار واحدی مدل  69

4-1-2-       مدل جامع مصرف نهایی آسیای اقیانوسیه”AIM”  69

4-1-2-1-       هدف   69

4-1-3-       سیستم مدل‌سازی جامع كانادایی (CIMS) 71

4-1-3-1-       هدف مدل  71

4-1-3-2-       ساختار كلی مدل  71

4-1-4-       مدل کلان‌سنجی بخش انرژی یونان  73

4-1-5-       مدل کشورهای تایلند، فیلیپین، اندونزی و مالزی   74

4-1-6-       مدل انرژی ـ اقتصاد هند  74

4-2-       مدل‌های کلان انجام شده مشتمل بر بخش انرژی در ایران. 76

4-2-1-       پروژه‌ی پیوند  77

4-2-2-       الگوی سازمان برنامه و بودجه (1) 78

4-2-3-       الگوی سازمان برنامه و بودجه (2) 78

4-2-4-       الگوهای فیروز وکیل  78

4-2-5-       الگوهای حبیب آگهی   79

4-2-6-       الگوی رابرت لونی   80

4-2-7-       الگوی سازمان برنامه و بودجه (3) 80

4-2-8-       الگوی آپادانا 81

4-2-9-       الگوی آق اولی و سیروس ساسان‌پور  82

4-2-10-     مدل برنامه اول توسعه  83

4-2-11-     الگوی بانك جهانی برای اقتصاد ایران  84

4-2-12-     الگوی وزارت اقتصاد و دارایی (نو فرستی و عرب مازار)(1) 84

4-2-13-     مدل برنامه‌ی دوم توسعه  86

4-2-14-     الگوی وزارت اقتصاد و دارایی (نوفرستی و عرب مازار) (2) 88

4-2-15-     الگوی بانک مرکزی (بیژن بید آباد) 90

4-2-16-     الگوی بانک مرکزی (کواک، مجرد و جمشیدی) 92

4-2-17-     الگوی سوم توسعه  94

فصل 5-    ساختار مدل پیشنهادیو تخمین اولیه پارامترها.. 99

5-1-       ساختار و ویژگی‌های کلی مدل. 100

٥-١-١-        ویژگی‌های ساختار مدل  100

5-2-       روابط علی و معلولی مدل. 101

5-2-1-       تعریف نمادهای استفاده شده در مدل  103

5-3-       تصریح روابط ساختاری و تخمین اولیه پارامترهای مدل. 105

5-3-1-       بخش تقاضای کل  107

5-3-1-1-       مخارج مصرفی بخش خصوصی  107

5-3-1-2-       مخارج مصرفی بخش دولتی  109

5-3-1-3-       کل سرمایه‌گذاری  111

5-3-1-4-       خالص صادرات و واردات   114

5-3-2-       بخش درآمدهای دولت   114

5-3-2-1-       مالیات   114

5-3-2-2-       درآمدهای نفتی  116

5-3-3-       بخش انرژی   117

5-3-3-1-       تقاضای نفت   117

5-3-3-2-       تقاضای گاز 119

5-3-3-3-       مصرف برق  121

5-3-3-4-       بخش سرمایه‌گذاری انرژی  126

5-3-4-       جمعیت   131

فصل 6-    کالیبراسیون پارامترها، بررسی نتایج و تحلیل حساسیت مدل   132

6-1-       كالیبراسیون پارامترها 133

6-1-1-       بیان ریاضی مدل  133

6-2-       بیان نتایج مدل. 138

6-3-       شبیه سازی در چارچوب مدل. 146

6-3-1-       تغییر قیمت حامل‌های انرژی   146

6-3-1-1-       اثر افزایش قیمت نفت   153

فصل 7-    جمع بندی و پیشنهادها.. 159

فصل 8-    ضمیمه الف: مفاهیم مدل و مدل‌سازی و جایگاه روش پویایی شناسی سیستمی   167

8-1-       مدل چیست؟. 168

8-2-       هدف از ساخت مدل چیست؟. 169

8-3-       معیارهای طبقه بندی مدل‌ها 170

٨-٣-١-        طبقه بندی براساس نحوه مدل‌سازی   170

٨-٣-٢-        طبقه بندی براساس محتوا 171

8-3-3-       طبقه بندی براساس نوع کاربرد مدل‌ها 172

8-4-       مدل‌های ریاضی.. 173

٨-٤-١-        طبقه بندی براساس درجه قطعیت پارامترها و متغیرهای مدل  173

٨-٤-٢-        طبقه بندی براساس نوع برخورد با زمان  174

٨-٤-٣-        طبقه بندی براساس نوع روابط مدل  175

8-5-       اعتبار سنجی مدل. 175

8-6-       تکنیک‌های مدل‌سازی.. 176

فصل 9-    ضمیمه ب: مدل‌سازی پویایی شناسی سیستمی در نرم افزار ithink یا STELLA  183

9-1-       مدل‌سازی پویایی شناسی سیستمی در نرم افزار ithink یا STELLA.. 184

9-1-1-       مؤلفه‌های مدل  184

9-1-2-       مدل‌سازی در ithink و STELLA  186

9-1-3-       اصول مدل‌سازی   197

9-1-4-       چهار روش کلی برای مدل‌سازی در ithink  199

9-1-4-1-       مدل‌های محرک ـ واکنش   199

9-1-4-2-       مدل خود بارگشت   202

9-1-4-3-       مدل هدف‌جو  204

9-1-4-4-       مدل‌ هدف‌ساز 206

9-1-5-       مثالها 209

9-1-5-1-       تجزیه نمایی یک جسم  209

9-1-5-2-       سردشدن تدریجی  211

9-1-6-       تابع‌ها در نرم افزار ithink  213
فهرست جدول‌ها

جدول (٢-1):               مراحل نظری مدل‌سازی.. 12

جدول (٢-2):               ویژگی‌های نمودارهای علّی ـ معلولی و حالت ـ جریان. 16

جدول (٥-1):               تخمین اولیه پارامترهای معادله مخارج مصرفی بخش خصوصی.. 109

جدول (٥-2):               تخمین پارامترهای معادله مخارج مصرفی دولت… 111

جدول (٥-3):               تخمین پارامترهای معادله کل سرمایه‌گذاری.. 113

جدول (٥-4):               تخمین پارامترهای معادله درآمدهای مالیاتی.. 115

جدول (٥-5):                    تخمین پارامترهای معادله تقاضای نفت… 119

جدول (٥-6):               تخمین پارامترهای معادله تقاضای گاز. 120

جدول (٥-7):               تخمین پارامترهای تقاضای برق بخش مسکونی.. 124

جدول (٥-8):               تخمین پارامترهای تقاضای برق بخش صنعت… 125

جدول (٥-9):               تخمین پارامترهای تقاضای برق بخش کشاورزی.. 125

 

جدول (٦-1):               نتایج مدل كلان انرژی طراحی شده 138

 

جدول (٨-1):               فهرست تابع‌های نرم‌افزار ithink. 214

 

فهرست شكل‌ها

شكل (٨-1):                نماد چهار متغیر مورد استفاده در ithink. 186

شكل (٨-2):                نماد انتقال به حالت مدل‌سازی.. 186

شكل (٨-3):                متغیر حالت… 187

شكل (٨-4):                متغیر جریان. 188

شكل (٨-5):                انتخاب نوع متغیر جریان. 189

شكل (٨-6):                ابزار مبدل و ابزار ارتباط دهنده 190

شكل (٨-7):                بازه‌های زمانی جهت اجرای مدل. 190

شكل (٨-8):                نمادهای نمودار و جدول. 191

شكل (٨-9):                ارتباط در جهت عكس…. 193

شكل (٨-10):               نمادهای جابجایی، تغییر رنگ و پاك كردناجزای مدل. 195

شكل (٨-11):               نماد ابزارهای متن و بخش…. 196

شكل (٨-12):               بیان ریاضی مدل رشد جمعیت… 197

شكل (٨-13):               افزایش جمعیت بدلیل مهاجرت… 200

شكل (٨-14):               بیان ریاضی رشد جمعیت بدیل مهاجرت… 202

شكل (٨-15):               مدل خود بازگشت… 203

شكل (٨-16):               مدل هدف‌جو. 205

شكل (٨-17):               مدل هدف ساز. 207

شكل (٨-18):               بیان ریاضی رشد جمعیت در مدل هدف‌ساز. 208

شكل (٨-19):               نرخ تجزیه یك جسم. 210

شكل (٨-20):               بیان ریاضی مدل تجزیه نمایی یك جسم. 211

شكل (٨-21):               مدل روند كاهش دما تا رسیدن به دمای مطلوب… 212

شكل (٨-22):               بیان ریاضی مدل كاهش دما تا رسیدن به دمای مطلوب… 213

شكل (٨-23):               مدلی جهت محاسبه میزان مبلغ قسط ماهانه یك وام. 216

شكل (٨-24):               مدلی جهت محاسبه ارزش فعلی.. 217

 

فهرست نمودارها

نمودار (٢-1):               مراحل مدل‌سازی پویایی‌شناسی سیستمی.. 11

نمودار (٢-2):               مدل چرخه سه مرحله‌ای.. 14

نمودار (٢-3):               متغیر حالت و متغیرهای نرخ.. 15

نمودار (٢-4):               زمان حایل.. 17

نمودار (٢-5):               نمودار حالت ـ جریان افزایش جمعیت… 19

 

نمودار (٤-1):               ساختار مدل مصرف نهایی AIM.. 70

 

نمودار (٥-1):               بخش Interface مدل کلان انرژی طراحی شده 101

نمودار (٥-2):            بخش مدل و روابط علی و معلولی درمدل کلان انرژی طراحی شده 102

نمودار (٥-3):               بخش شبیه سازی در مدل کلان انرژی طراحی شده 103

نمودار (٥-4):               بخشهای مجزا شده در مدل کلان انرژی طراحی شده 106

نمودار (٥-5):               بخش تقاضای کل در مدل. 107

نمودار (٥-6):               اجزای تشکیل دهنده مصرف بخش خصوصی.. 109

نمودار (٥-7):               اجزای تشکیل دهنده مصرف بخش دولتی.. 110

نمودار (٥-8):               کل سرمایه‌گذاری در اقتصاد. 112

نمودار (٥-9):               کل سرمایه‌گذاری بخش انرژی.. 112

نمودار (٥-10):               رابطه اجزای مخارج سرمایه‌گذاری معمولی.. 113

نمودار (٥-11):               بخش‌های صادرات و واردات… 114

نمودار (٥-12):               درآمدهای مالیاتی دولت… 115

نمودار (٥-13):               بیان درآمدهای حقیقی نفتی دولت بصورت تابعی از زمان. 117

نمودار (٥-14):               رابطه اجزای تشكیل دهنده تقاضای نفت… 118

نمودار (٥-15):               بیان قیمت نفت بصورت تابعی از زمان. 119

نمودار (٥-16):               رابطه اجزای تشكیل دهنده تقاضای گاز. 120

نمودار (٥-17):               مصرف کلی برق (مجموع مصرف سه بخش مسکونی، صنعتی و کشاورزی) 122

نمودار (٥-18):               تقاضای برق بخش مسکونی.. 122

نمودار (٥-19):               بیان قیمت برق مسكونی بصورت تابعی از زمان. 122

نمودار (٥-20):               تقاضای برق بخش صنعت… 123

نمودار (٥-21):               بیان قیمت برق صنعتی بصورت تابعی از زمان. 123

نمودار (٥-22):               تقاضای برق بخش کشاورزی.. 123

نمودار (٥-23):               بیان قیمت برق كشاورزی بصورت تابعی از زمان. 124

نمودار (٥-24):               کل مصرف انرژی.. 126

نمودار (٥-25):               محاسبه سرمایه‌گذاری مورد نیاز در بخش نفت… 128

نمودار (٥-26):               محاسبه سرمایه‌گذاری مورد نیاز در بخش گاز. 129

نمودار (٥-27):               محاسبه سرمایه‌گذاری مورد نیاز در بخش برق.. 130

نمودار (٥-28):               نحوه رشد جمعیت در مدل. 131

 

نمودار (٦-1):               تولید ناخالص ملی و رشد آن. 140

نمودار (٦-2):               رشد جمعیت… 141

نمودار (٦-3):               مصرف حقیقی بخش دولتی.. 141

نمودار (٦-4):               مصرف بخش خصوصی بجز انرژی.. 142

نمودار (٦-5):               سرمایه‌گذاری كل بجز بخش انرژی.. 142

نمودار (٦-6):               سرمایه‌گذاری كل بخش انرژی.. 142

نمودار (٦-7):               سرمایه‌گذاری بخش گاز. 143

نمودار (٦-8):               سرمایه‌گذاری بخش برق.. 143

 

پایان نامه

 

نمودار (٦-9):               سرمایه‌گذاری بخش نفت… 143

نمودار (٦-10):               مصرف انرژی گاز طبیعی در اقتصاد. 144

نمودار (٦-11):               مصرف فرآورده‌های نفتی در اقتصاد. 144

نمودار (٦-12):               خالص درآمدهای مالیاتی دولت… 144

نمودار (٦-13):               مصرف انرژی الكتریسیته توسط بخش كشاورزی.. 145

نمودار (٦-14):               مصرف انرژی الكتریسیته توسط بخش صنعت… 145

نمودار (٦-15):               مصرف انرژی الكتریسیته توسط بخش مسكونی.. 145

نمودار (٦-16):               بخش شبیه سازی در مدل کلان انرژی طراحی شده 146

نمودار (٦-17):               افزایش GDP از سناریوی اول تا سوم. 148

نمودار (٦-18):               كاهش مصرف برق در بخش كشاورزی از سناریوی اول تا سوم. 148

نمودار (٦-19):               كاهش مصرف برق در بخش صنعتی از سناریوی اول تا سوم. 149

نمودار (٦-20):               كاهش مصرف برق در بخش مسكونی از سناریوی اول تا سوم. 149

نمودار (٦-23):               كاهش سرمایه‌گذاری كل در بخش انرژی از سناریوی اول تا سوم. 151

نمودار (٦-24):               كاهش سرمایه‌گذاری در بخش گاز از سناریوی اول تا سوم. 151

نمودار (٦-25):               كاهش سرمایه‌گذاری در بخش برق از سناریوی اول تا سوم. 152

نمودار (٦-26):            كاهش سرمایه‌گذاری در بخش نفت در كوتاه مدت در سناریوی سومنسبت به اول و برعكس در بلند مدت      152

نمودار (٦-27):               افزایش رشد تولید ناخالص ملی در كوتاه مدت در سناریوی سومنسبت به اول و برعكس در بلند مدت      153

نمودار (٦-28):               اعمال افزایش قیمت نفت از سال ١٣٨٤. 153

نمودار (٦-29):               تغییرات GDP پس از افزایش قیمت نفت از سال ١٣٨٤. 154

نمودار (٦-30):               تغییرات مصرف فرآورده‌های نفتی پس از افزایش قیمت نفت از سال ١٣٨٤. 154

نمودار (٦-31):               تغییرات در مصرف كل انرژی پس از افزایش قیمت نفت از سال ١٣٨٤. 155

نمودار (٦-32):               تغییرات مصرف بخش دولتی پس از افزایش قیمت نفت از سال ١٣٨٤. 155

نمودار (٦-33):               تغییرات مصرف بخش خصوصی پس از افزایش قیمت نفت از سال ١٣٨٤. 156

نمودار (٦-34):               تغییرات سرمایه‌گذاری غیر از انرژی پس از افزایش قیمت نفت از سال ١٣٨٤. 156

نمودار (٦-35):               تغییرات درآمدهای مالیاتی بخش دولتی پس از افزایش قیمت نفت از سال ١٣٨٤. 157

نمودار (٦-36):               تغییرات سرمایه‌گذاری بخش انرژی پس از افزایش قیمت نفت از سال ١٣٨٤. 157

نمودار (٦-37):               تغییرات سرمایه‌گذاری بخش نفت پس از افزایش قیمت نفت از سال ١٣٨٤. 158

نمودار (٦-38):            تغییرات رشد اقتصاد پس از افزایش قیمت نفت از سال ١٣٨٤. 158

 

نمودار (٧-1):               كاهشرشد تولید ناخالص ملی با افزایش قیمت‌های انرژی.. 161

نمودار (٧-2):            كاهش تولید ناخالص ملی با افزایش قیمت‌های انرژی.. 161

نمودار (٧-3):               كاهشمصرف انرژی بخش خصوصی با افزایش قیمت‌های انرژی.. 161

نمودار (٧-4):               كاهشمصرف بخش خصوصی با افزایش قیمت‌های انرژی.. 162

نمودار (٧-5):               كاهش مصرف گاز طبیعی با افزایش قیمت گاز. 162

نمودار (٧-6):               كاهش مصرف مشتقات نفتی با افزایش قیمت نفت… 163

نمودار (٧-7):               كاهش مصرف الكتریسیته در بخش مسكونی با افزایش قیمت الكتریسیته. 163

نمودار (٧-8):               كاهش مصرف الكتریسیته در بخش صنعتی با افزایش قیمت الكتریسیته. 163

نمودار (٧-9):            كاهش مصرف الكتریسیته در بخش كشاورزی با افزایش قیمت الكتریسیته. 164

نمودار (٧-10):               سرمایه گذاری مورد نیاز برای تولید گاز با افزایش قیمت گاز. 164

نمودار (٧-11):               كاهش مصرف مشتقات نفتی با افزایش قیمت نفت… 164

نمودار (٧-12):               كاهش سرمایه گذاری مورد نیاز برای تولید الكتریسیته با افزایش قیمت الكتریسیته. 165

نمودار (٧-13):               كاهش کل سرمایه‌گذاری مورد نیاز در انرژی با افزایش قیمت‌های انرژی.. 165

نمودار (٧-14):               كاهش کل سرمایه‌گذاری در اقتصاد با افزایش قیمت‌های انرژی.. 165

 

نمودار (٨-1):               مراحل ساختن یك مدل. 185

نمودار (٨-2):               نمودار رشد جمعیت… 191

نمودار (٨-3):               تشكیل یك تابع گرافیكی.. 194

نمودار (٨-4):               رشد جمعیت پس از اعمال ارتباط در جهت عكس…. 194

نمودار (٨-5):               تابع گرافیكی نرخ مهاجرت… 200

نمودار (٨-6):               رشد جمعیت بوسیله مهاجرت… 201

نمودار (٨-7):               تابع گرافیكی نرخ خالص تولد. 203

نمودار (٨-8):               رشد جمعیت در حالت ارتباط بین نرخ خالص تولد و سطح جمعیت… 204

نمودار (٨-9):               رشد جمعیت با توجه به یك هدف… 206

نمودار (٨-10):               تابع گرافیكی رابطه بین تراکم جمعیت و جمعیت هدف… 207

نمودار (٨-11):               تابع گرافیكی تغییر مساحت محیط.. 208

نمودار (٨-12):               رشد جمعیت تا رسیدن به هدف مورد نظر. 208

نمودار (٨-13):               روند تجزیه نمایی یك جسم. 210

نمودار (٨-14):               روند كاهش دما تا رسیدن به دمای مطلوب… 212

نمودار (٨-15):               روند افزایش ارزش فعلی (NPV) 217

1-1-1-   تعریف مسأله

مدل سازی در تصمیمات اقتصادی دارای جایگاه ویژه‌ای است و می‌تواند روابط دنیای اطرافمان را بصورت نمادین به ما نشان دهد و قدرت تصمیم گیری صحیح را ارتقا بخشد. هدف از مدل سازی رسیدن به اهدافی خاص است که اگر برنامه فوق بدرستی نتواند شرایط محیطی را بررسی نماید برنامه‌ریز را دچار خطا خواهد كرد و پیشنهاداتی كه از این طریق داده شود به هدف مورد نظر منتهی نخواهد گردید. در كشورهای كمتر توسعه یافته و از جمله ایران به مدل سازی به عنوان ابزاری مطمئن و دقیق نگریسته نمی‌شود و تصمیم گیران اقتصادی به پیشنهادات برنامه‌ریزان توجه اساسی نمی‌كنند. علت این امر را می‌توان در اشتباهات فراوان و عدم جامعیت و پویایی مدل‌های ارائه شده دانست، كه خصوصا در مدل‌های اقتصادی این مشكل مشهود است.

اتخاذ تصمیم‌های سیاستی در سطح كلان اقتصاد انرژی بدون در نظر گرفتن جنبه‌های عرضه و تقاضای انرژی، بصورت پویا و اثرات آنها در بخش‌های مختلف اقتصاد دارای نااطمینانی فراوانی است كه مدل‌های ایستا نمی‌توانند به طور كامل آن را برطرف كنند.مدل‌های پویا كه بصورت سیستمی و همه جانبه به جنبه‌های مختلف موضوع می‌پردازند می‌توانند اطمینان تصمیم گیران اقتصادی در بخش انرژی را به خود جلب نموده و با ارائه نمایی روشن و واضح از عواقب و اثرات تصمیمات سیاستی در سطح كلان اقتصاد، آنها را به سوی اهداف كلان اقتصادی هدایت كنند. این مدل‌ها می‌توانند پیامدهای تصمیماتی از قبیل وضع مالیاتها، تعرفه ‌ها و یارانه‌های مختلف بر بخش انرژی را بیان نموده و اثرات تغییرات متغیرهای كلان اقتصاد را بر این بخش مورد بررسی قرار دهند.

در این تحقیق از نرم‌افزار ithink یاSTELLA  استفاده خواهد شد كه محیطی كارآمد و قابل فهم و انعطاف پذیر برای طراحی مدل‌های اقتصادی در سطح خرد و كلان فراهم می‌سازد و واقعیات جامعه را با استفاده از نمودارها و جدول‌های مناسب و متنوع به مخاطب ارائه می‌كند. این نرم‌افزار این امكان را به سیاست گزار می‌دهد كه علاوه بر روابط خطی كه در مدل‌های سنجی اراده می‌گردد روابط غیر خطی را نیز بصورت پویا بیان نماید و با تحلیل حساسیت در مدل طراحی شده، اثرات این تغیییرات را در سطح كلان اقتصاد مشاهده كرده و بهترین تصمیم را اخذ نماید. در نتیجه پویا سازی مدل بخش برق به انضمام كلان اقتصاد این امكان را به تصمیم گیران انرژی كشور می‌دهد كه عواقب كوتاه مدت و بلند مدت تصمیمات خود در بخش برق از قبیل مالیات‌ها و یارانه‌ها و تغییرات قیمت مشاهده نمایند و بهترین تصمیم را برای كوتاه مدت و بلند مدت اتخاذ كنند.

دانلود پایان نامه : ساخت و ارزیابی كاتالیزور وانادیل پیرو فسفات حاوی كبالت (Co-VPO)و كاربرد آن در اكسیداسیون انتخابی الكل ها

ساخت و ارزیابی كاتالیزور وانادیل پیرو فسفات حاوی كبالت (Co-VPO) و كاربرد آن در اكسیداسیون انتخابی الكل ها

توسط: مطهره نور محمد بیگی

در این پایان نامه، کاتالیزور وانادیل پیرو فسفات حاوی درصدهای مختلف وزنی کبالت با استفاده از روش تلقیح Impregnation)) ساخته شده و کاتالیزور بهینه VOHPO4-0.5H2O شامل 3 درصد وزنی از کبالت شناسایی شد. ساختار کاتالیزور از طریق تکنیک هایی همچونXRD ،SEM  و   TG/DTA/DSC شناسایی شده است. سپس اکسایش بنزیل الکل در مجاور اکسنده ی ترشیو بوتیل هیدرو پراکساید (TBHP) در حلال استو نیتریل مورد مطالعه قرار گرفت. برای آنالیز محصولات شیمیایی، از دستگاه کروماتوگرافی گازی مجهز به آشکار ساز یونش شعله ای (FID) استفاده می شود.

 

پایان نامه و مقاله

 

در این سیستم کاتالیزوری، اثر مقدار کاتالیزور، اثر دما، اثر نوع الکل، اثر خیساندن، اثر قابلیت تکرار پذیری و کاربرد مجدد، اثر نسبت مولی اکسید کننده به ماده اولیه مورد بررسی قرار گرفت و در هر مورد مقادیر مناسب و بهینه شناسایی شد. در این واکنش ها، ماده اولیه (بنزیل الکل) با استفاده از اکسنده (ترشیو بوتیل هیدرو پراکساید) اکسایش پیدا کرده و محصول اصلی واکنش که بنز آلدهید می باشد را تولید می کند، علاوه بر آن محصولاتی همچون بنزوئیک اسید و بنزیل بنزوات، در مقادیر کم به عنوان محصولات فرعی تشکیل شدند.

مفهوم کاتالیزور

کاتالیزور ماده ای است که سرعت یک واکنش شیمیایی را افزایش دهد بدون آن که در فرآورده های نهایی ظاهر شود. عبارت کاتالیزور از دو لغت یونانی تشکیل می گردد. پیشوند «کاتا» به معنی پایین و فعل «لیزین» به معنی پخش یا شکست یا بیدار کردن میل ترکیبی خفته می باشد. یک کاتالیزور نیروی طبیعی را که مانع انجام واکنش می گردد از بین می برد[1].

هنگامی که کاتالیزور به صورت محلول در محیط واکنش است کاتالیزور همگن و وقتی که کاتالیزور فازی مجزا از فاز واکنش تشکیل می دهد، کاتالیزور ناهمگن نامیده می شود. در اکثر موارد کاتالیزور ناهمگن، کاتالیزور جامدی است که از تماس با آن واکنش گر های گازی یا مایع متحول می شوند و در نتیجه بیشتر اوقات عبارت کاتالیزور تماسی برای نامیدن کاتالیزور ناهمگن به کار می رود[2].

برای کامل نمودن تعریف کاتالیزور، لازم است نکات زیر به آن اضافه گردد:

1) کاتالیزور می تواند یک ماده جامد، مایع، گاز و یا یک مجموعه پیچیده باشد.

2) کاتالیزور عمل سرعت واکنش را به عهده دارد، همچنین می تواند نقش جهت                       دهندگی داشته باشد.

3) کاتالیزور دارای عمر مشخصی است و در اثر انجام واکنش به تدریج فعالیت و گزینش پذیری خود را از دست می دهد.

4) هیچ رابطه­ی استوکیومتری بین مقدار ماده ای که تبدیل می شود و مقدار کاتالیزوری که فعالیت خود را از دست می دهد وجود ندارد.

5) یک واکنش که از نظر ترمودینامیکی امکان پذیر نمی باشد، در مجاورت کاتالیزور نیز امکان پذیر نخواهد بود. زیرا کاتالیزور در ترمودینامیک واکنش دخالتی ندارد.

دانلود پایان نامه ارشد : شناسایی تشکل‌های همپوشان در شبکه‌های پویا

در دنیای امروز، ما با سیستم های پیچیده ای[1] در پیرامون خود احاطه شده ایم، از جامعه که در آن میلیون ها عضو با یکدیگر در حال تعامل هستند تا شبکه های تلفن همراه و کامپیوتر که میلیون ها کاربر را به یکدیگر متصل می‌کنند. همچنین توانایی ما برای استنتاج و درک محیط اطراف، وابسته به شبکه ای از میلیاردها سلول عصبی[2] در مغز ماست. این سیستم های پیچیده نقش های بسیار مهمی در جنبه های مختلف زندگی ما ایفا می‌کنند. درک، توصیف، پیش بینی و کنترل این سیستم ها از جمله بزرگترین چالش های ما در جهان مدرن است.

معمولا در پشت هر کدام از این سیستم های پیچیده، شبکه ای عظیم قرار دارد که تعاملات بین اجزای این سیستم ها را مشخص می‌کند. به عنوان مثال: فعل و انفعالات شیمیایی درون بدن موجودات زنده، تعاملات میان سلول های عصبی مغز، روابط دوستی، خویشاوندی و اجتماعی، شبکه جهانی اینترنت، تراکنش های مالی، خطوط انتقال و توزیع نیرو، راه های ارتباطی زمینی، هوایی و دریایی، همگی بخشی از مواردی هستند که می‌توان آنها را به صورت یک شبکه توصیف کرد. همچنین می‌توان گفت که شبکه ها قلب بسیاری از فناوری های انقلابی عصر حاضر هستند. موتورهای جستجو[3]، شبکه های اجتماعی مجازی[4]، شبکه های کامپیوتری جهانی، شبکه جهانی مخابرات و تلفن همراه تنها تعدادی از این نمونه ها هستند.

 

مقالات و پایان نامه ارشد

 

با وجود تفاوت و تنوع بسیار زیادی که در ماهیت، اندازه، کاربرد، رفتار و ویژگی های مختلف این سیستم ها و شبکه ها، چه از نوع طبیعی و چه ساخته دست بشر وجود دارد، می‌توان اصول و قوانین مشخص و مشابهی را در میان آنها مشاهده کرد. برای مثال: شبکه واکنش های شیمیایی که اجزای آن را مولکول های بسیار کوچک تشکیل می‌دهند، شبکه جهانی وب[5] که در آن صفحات وب به وسیله پیوندهای وب[6] به یکدیگر متصل شده اند، شبکه های اجتماعی که از روابط میان افراد تشکیل شده اند و بسیاری موارد دیگر، همگی قابل توصیف با ساختارها و قوانین مشابهی هستند و این امر به عنوان یک مزیت بزرگ تلقی می‌شود. زیرا می‌توان تمام این سیستم های متفاوت طبیعی و مصنوعی را توسط ابزارهای ریاضی و مدل سازی مشابهی توصیف کرد.

با توجه به اینکه از سال ها پیش بسیاری از این سیستم ها، مانند: ساختارها و واکنش های زیستی، راه های ارتباطی، روابط اجتماعی و نظایر آن و همچنین دانش مطالعه بر روی سیستم ها و شبکه ها شناخته شده اند، پرسشی که ممکن است مطرح شود این است که چرا اهمیت این موضوع تنها در چند دهه اخیر آشکار شده است؟ پاسخی که می‌توان داد این است که در گذشته ابزارهای مناسبی برای جمع آوری، نگهداری و پردازش این اطلاعات وجود نداشت اما امروزه با توسعه چشمگیر فناوری هایی نظیر کامپیوتر و شبکه های ارتباطی دیجیتال، این امکان فراهم آمده است که گردآوری، ترکیب، اشتراک و تحلیل این اطلاعات با سهولت، سرعت و دقت بالا و هزینه کم قابل اجرا باشد.

دانش شبکه

دانش شبکه شاخه ای از علوم بشری است که به مطالعه بر روی شبکه ها می‌پردازد و تلاش می‌کند با استفاده از نتایج بررسی های خود، از آنها برای درک بهتر سیستم های پیچیده بهره بگیرد. به طور کلی می‌توان چهار ویژگی را برای این دانش برشمرد که در ادامه به اختصار به آنها اشاره می‌شود (1):

ماهیت میان رشته ای: با توجه به نحوه برخورد با مسئله در حوزه مطالعه شبکه ها، این دانش تنها به یک شاخه خاص از علم محدود نبوده و می‌تواند در علوم گوناگون از قبیل: علوم اجتماعی، زیستی، کامپیوتر، فیزیک، شیمی، اطلاعات، اقتصاد، امنیت و بسیاری از موارد دیگر کاربرد داشته باشد. به عنوان مثال، روشی که در حوزه علوم اجتماعی برای تشخیص افراد و گرو های موثر بر جامعه مورد استفاده قرار می‌گیرد، ممکن است در شبکه های کامپیوتری برای مدیریت ترافیک شبکه به کار برده شود.

عملگرایی و تمرکز بر داده ها: بر خلاف نظریه گراف ها که بیشتر به جنبه های انتزاعی و ریاضی مسائل توجه دارد، این دانش بیشتر بر حوزه کاربرد عملی و داده های مسئله تمرکز می‌کند. به همین جهت ابزارها و روش هایی که در این زمینه ارائه می‌شوند، بر روی داده ها و مسائل واقعی آزمایش می‌شوند تا قابلیت و کارایی آنها مشخص شود.

بیان کمی و ریاضی: مطالعه شبکه ها برای توصیف و مطالعه بهتر و دقیق تر، از ابزارها و روش های ریاضی بهره می‌برد. به عنوان مثال: نظریه گراف ها، آمار و احتمالات، داده کاوی[8]، تئوری اطلاعات[9]، کنترل و فیزیک آماری از جمله علومی هستند که در این حوزه کاربرد دارند.

پردازش و محاسبات: از آنجا که اغلب مسائل مطرح شده در این حوزه، حجم عظیمی از اطلاعات را در بر می‌گیرند، بخش مهمی از کار به طراحی و بکارگیری روش هایی معطوف می‌شود که بتوانند از عهده محاسبات سنگین مورد نیاز برآیند. به همین منظور طراحی الگوریتم ها، پایگاه داده ها و داده کاوی بخشی از ابزارهای نرم افزاری هستند که بسیار به کار برده می‌شوند.

دانلود پایان نامه ارشد : شناسایی نفوذگران با کمک مفهوم شبکه اجتماعی

 

استفاده روزافزون افراد، سازمان ها، ارگان های دولتی و حتی زیرساخت های حیاتی مانند نیروگاه ها، از شبکه های کامپیوتری و اینترنت ، سبب شده تا بسیاری از تعاملات فردی و مالی وابسته به شبکه های کامپیوتری باشد. از سویی دیگر، این مسئله شبکه های کامپیوتری و کاربران آنها را به طمعه هایی جهت افراد سودجو تبدیل کرده است. بسیاری از افراد با نفوذ در شبکه و سرقت اطلاعات فردی و یا مالی، خسارات زیادی را به افراد، سازمانها و حتی دولت ها وارد کرده اند. به طور کلی می­توان واژه نفوذ را به فعالیت­هایی اطلاق کرد که توسط نفوذگر به منظور ورود به سیستم اطلاعاتی جهت خواندن، آسیب رساندن و سرقت اطلاعات صورت می گیرد. بر اساس بسیاری از برآوردها، درصد بالایی از نفوذهای انجام شده -بیش از 85 درصد- از طرف کاربران داخلی انجام می­شود و مابقی از خارج از محیط صورت می گیرد[5] . از این رو هیچ فرد و یا سازمانی که با سیستم­های اطلاعاتی سر و کار دارد، نمی تواند از این قبیل حوادث امنیتی مصون باشد. در نتیجه سیستم های شناسایی نفوذ تبدیل به بخش جدایی ناپذیر از ساختار امنیتی غالب سیستم های اطلاعاتی گردیده اند[17]. سیستم شناسایی نفوذ، تنها سیستمی است که به شکل فعال قادر به شناسایی استفاده­های غیرمجاز و نیز سوءاستفاده از سیستم­های اطلاعاتی توسط حمله­گرهای داخلی و خارجی می­باشد. سیستم شناسایی نفوذ اطلاعات مرتبط با منابع مختلف در شبکه های کامپیوتری را جمع آوری و به منظور پی بردن به فعالیت های نفوذی تحلیل می کنند.  غالبا فعالیت های نفوذی به منظور دستیابی، دستکاری و ایجاد اختلال در سیستم های

 

پایان نامه

 کامپیوتری صورت می گیرد. در نتیجه این سیستم یکی از اجزای بسیار ضروری در حفظ امنیت ساختارهای اطلاعاتی است و می­تواند در کنار دیوار آتش[1] به حفظ امنیت سیستم اطلاعاتی کمک کند. به عنوان نمونه هایی از سیستم شناسایی نفوذ می توان به سیستم های تشخیص نفوذ تحت شبکه، دیوارهای آتش تحت وب، سیستم شناسایی بدافزار botnet و … اشاره کرد. به علاوه سیستم شناسایی نفوذ در راستای حفظ سیستم اطلاعاتی از حملات خطرناک، قادر است تا دیوار آتش را به گونه ای مناسب پیکربندی کند.

 

 

  • اهدف تحقیق

 

امروزه امنیت شبکه­های اطلاعاتی، یکی از مسائل چالش برانگیز در حوزه علوم کامپیوتری می­باشد. دامنه حملات به شبکه­های کامپیوتری هر روز گسترده­تر می­شود؛ اما مسئولیت شناسایی و مسدود کردن حملات در کاربران نهایی و سرویس­دهندگان اینترنت به عهده مدیران این سیستم­ها واگذار شده است. وجود نقاط آسیب­پذیر در سیستم­های اطلاعاتی به همراه رشد انفجاری انواع مختلف بدافزار، باعث شده تا روند به­روز نگه­داشتن سیستم­های شناسایی نفوذ مبتنی بر امضا با دشواری­هایی مواجه گردد. در نتیجه این سیستم­ها قادر به شناسایی حملات نوظهور نخواهند بود. سیستم­های شناسایی نفوذ مبتنی بر ناهنجاری نیز علی­رغم قابلیت تطبیق­پذیری­شان و توانمندی در شناسایی حملات نوظهور, بسیار وابسته به تعریفی که از مدل نرمال سیستم ارائه می­شود، هستند.

طی ­چند سال اخیر، شبکه­­های اجتماعی تبدیل به قطب مرکزی اطلاعات و ارتباطات گردیده و به شکل روزافزون مورد توجه و حمله قرار گرفته­اند. این مسئله سبب شده تا تشخیص نفوذگران از کاربران عادی، تبدیل به یکی از مسائل چالش­برانگیز در رابطه با شبکه­های اجتماعی گردد. در تحقیق پیش رو بر اساس رویکرد مبتنی بر ناهنجاری، به بررسی چگونگی شناسایی نفوذگران در شبکه­های اجتماعی خواهیم پرداخت. تمرکز اصلی ما بر این مطلب استوار است که قادر باشیم به صورت پویا و با کمترین پیچیدگی زمان و فضا، نفوذگر را شناسایی کرده و به شکل فعال، نسبت به وی عکس العمل نشان دهیم.

یکی از ویژگی­های شبکه­های اجتماعی این است که الگوی  ارتباطی و در نتیجه الگوی رفتار اجتماعی کاربران شبکه را به وضوح انعکاس می­دهند [5]. به همین دلیل برای ساخت مدل رفتار نرمال در شبکه و شناسایی انحرافات از این مدل نرمال جهت شناسایی رفتار نابهنجار کاربران شبکه، تمرکز ما در این تحقیق بر شناسایی نفوذگران بر مبنای رفتار آنها در شبکه­های اجتماعی خواهد بود. برای شناسایی نفوذگران در یک شبکه، مفهوم متفاوتی از نفوذ، مبنای کار قرار داده شده است: “نفوذ، ورود یک فرد به اجتماعی[2] است که به آن تعلق ندارد”.  بر اساس این مفهوم می­بایست ابتدا گراف ارتباطات شبکه را شکل داده، اجتماعات را در گراف تعیین کرد و در ادامه تعلق داشتن و یا نداشتن یک فرد به یک اجتماع را استخراج کرد.

برای شناسایی الگوهای ارتباطی کاربران، از داده­های جریان شبکه[3] که شامل جریان داده میان میزبان­های نهایی که توسط آدرس­های IP نشان داده می­شوند، می­توان استفاده کرد. همان طور که می­دانیم بسیاری از روش­های تشخیص نفوذ، قادر نیستند تنها با داشتن این اطلاعات ساده کار کنند و نیاز به ویژگی­های متعددی در مورد ارتباطات کاربر در شبکه دارند.

یکی از دلایلی که سبب شده تا در این تحقیق توجه خود را معطوف به مجموعه داده­ جریان شبکه کنیم، این است که این نوع مجموعه داده دارای تعداد ویژگی کمتری نسبت به مجموعه داده­های متداول -که در رویکرد مبتنی بر ناهنجاری استفاده می­شوند- می­باشند؛ در نتیجه می­تواند در رسیدن به هدف این تحقیق که همان استفاده از سیستم در کوتاهترین زمان است به ما کمک کند. این نوع مجموعه داده بر مبنای اطلاعات ضبط شده دیواره­های آتش، از فراهم کننده­های سرویس اینترنتی[4] جمع آوری می­شوند. همان طور که ذکر شد، مجموعه داده­های متداول جهت تحقیق در زمینه سیستم­های شناسایی نفوذ مبتنی بر ناهنجاری – مانند KDD99- دارای تعداد ویژگی بیشتری نسبت به داده­های جریان شبکه هستند. علاوه بر این، با توجه به ظهور روش­های نفوذ و بدافزارهای جدید، بدیهی است که استفاده از مجموعه داده­هایی که مربوط به سال­های اخیر باشد را می­توان در اولویت کار قرار داده شود.

دانلود پایان نامه : طراحی کنترل بهینۀ تطبیقی برای سیستم­های با دینامیک پیچیده بر مبنای روش‌های محاسبات نرم

روش­های طراحی کنترل کننده برای سیستم­های غیرخطی را می­توان به سه دسته تقسیم کرد. روش اول شامل خطی سازی سیتم­های غیرخطی حول نقطۀ کار است [1]. در این حالت قوانین کنترل کلاسیک برای سیستم­های تقریبی استفاده می­شود. با وجود سادگی این قوانین سیستم کنترل به صورت کلی کارایی تضمین شده­ای ندارد. روش دوم طراحی کنترل کننده بر اساس دینامیک سیستم­های غیر خطی است. در این روش خصوصیات سیستم­های غیر خطی حفظ می­شود، که همین امر به دلیل وجود دینامیک پیچیدۀ این سیستم­ها طراحی را بسیار سخت می­کند [2]. علاوه بر این، روش­های فوق، از مدل­سازی ریاضی دقیقی بهره می­برند که در حالت تئوری کارایی بسیار خوبی دارد، اما در عمل به علل مختلفی از جمله تغییر در شرایط عملیاتی، عدم قطعیت­های دینامیک اعم از ساختار یافته و ساختار نیافته، و اغتشاشات خارجی، دچار افت عملکردی می­شوند. در حقیقت به دست آوردن یک مدل ریاضی دقیق برای فرآیندهای سیستم­های پیچیدۀ صنعتی بسیار سخت است. به علاوه عوامل دیگری هم وجود دارند که قابل پیش­بینی نیستند، مانند اغتشاش، دما، تغییرات پارامترهای سیستم و غیره. بنابراین دینامیک سیستم را نمی­توان فقط بر اساس مدل احتمالاً دقیق ریاضی بیان کرد. روش سوم کنترل کننده­های غیر خطی را توسط ابزار محاسباتی هوشمند از جمله شبکه­های عصبی مصنوعی[1] (ANNs) و سیستم­های منطق فازی[2] (FLSs) پیاده­سازی می­کند [3-8]. این تکنیک­ها در بسیاری از کاربردهایشان به خوبی نتیجه داده­اند و به عنوان ابزاری قدرتمند توانسته­اند مقاومت بالایی را برای سیستم­هایی که به لحاظ ریاضی خوش تعریف نبوده و در معرض عدم قطعیت قرار گرفته­اند، ایجاد کنند [9,10]. تئوری تقریب عمومی[3] عامل اصلی افزایش استفادۀ اینگونه مدل­ها است و بیان می­دارد که با این روش­ها به لحاظ تئوریک قادر به تخمین هر تابع

 

پایان نامه و مقاله

 حقیقی و پیوسته­ای با دقت دلخواه هستند. مدل­های مختلف شبکه­های عصبی مصنوعی و منطق فازی برای حل بسیاری از مشکلات پیچیده به کار می­روند و نتایج نیز عموماً مطلوب است [11-14]، و می­توان به این نکته معترف بود که این روش­ها جایگزینی بر روش‌های کنترلی معمولی و کلاسیک خواهند بود. به عنوان نمونه­ای از قدرت­نمایی و کاربرد هوش مصنوعی می­توان به طراحی کنترل کننده­هایی برای فضاپیماها و ماهواره­ها اشاره کرد که مثالی از آن را در [15] آورده شده است.

 

1-1-     پیشینۀ پژوهشی

در ادامۀ بررسی پیشینۀ پژوهشی در موضوع تحقیق به بررسی کارهای انجام شده به صورت گزینشی و خلاصه می­پردازیم:
شاید یکی از قدیمی­ترین طراحی­ها برای سیستم­های ناشناخته که با موفقیت همراه بود در مقاله­ای که در [27] آورده شده است، ارائه گشته است. این طراحی توسط Gregory C. Chow در سال1973 برای سیستم­های خطی با پارامترهای نامشخص و بر اساس تئوری کنترل بهینه صورت گرفته و به لحاظ تئوری نتایج مطلوبی را از خود نشان داده است. طراحی فوق فقط برای سیستم­های خطی جواب­گو بود و در عالم واقع و در عمل کاربرد چندانی نداشت اما زیر بنای طراحی­های جدید و بهتر را بنا نهاد.
بعد از سال 73 و در تلاش برای طراحی برای سیستم­های ناشناختۀ غیرخطی مقالات، پایان­نامه­ها و کتب زیادی منتشر شد که اگر بخواهیم به همۀ آنها اشارۀ کوچکی هم داشته باشیم فرصت زیادی را می­طلبد. در اینجا با توجه به امکانات و منابع موجود و به ترتیب تاریخ انتشار مواردی را در حد اشاره­ای مختصر و بیان کلی نقاط ضعف و قوت بیان می­کنیم.
در ابتدا می­توان به رسالۀ دکتری آقای Moon Ki Kim از دانشگاه ایلینویز شیکاگو [28] اشاره کرد، که در آن زمان (1991) استراتژی جدیدی را در صنعت ماشین­سازی مورد بررسی و تحقیق قرار داد. کار او روش جدیدی در طراحی سیستم­های کنترل به نام کنترل­کنندۀ فازی تطبیقی (AFC)[4] بود که با توجه به قدمت آن مزایا و معایب کار تا حدود زیادی مشخص است و نیازی به توضیح اضافه نیست.
کارهای مشابه زیادی تا سال 2006 انجام گرفت که از توضیح در مورد آنها اجتناب می­کنیم و فقط چند نمونه را به عنوان مثال برای بررسی علاقه­مندان در مراجع می­آوریم [29-35].
منابع اصلی ما که در حقیقت معیارهای عملکردی و مقایسه­ای برای ما محسوب می­شوند از سال 2007 به بعد خصوصاً 3 سال اخیر هستند که چند مورد از آن­ها را با بیان مزایا و معایبشان به اختصار بیان می­کنیم.

  1. اولین مورد، مقاله­ای است که در سال 2007 به چاپ رسیده است [47]. در این مقاله به کمک قوانین فازی و ترکیب آن با کنترل تطبیقی کنترل کننده­ای برای ردگیری خروجی سیستم MIMO با دینامیک نامشخص طراحی شده است. ایدۀ اصلی این کار رفع مشکل ردگیری این سیستم­ها در حالت بلوک­_مثلثی بوده است. مشکل مشخص نبودن تابع تبدیل به دلیل غیرخطی بودن به کمک منطق فازی تا حدودی کم اثر شده و تقریب مناسبی صورت گرفته است. با استفاده از روش طراحی پس­گام، کنترل کنندۀ تطبیقی فازی برای سیستم­های غیرخطی MIMO قابل اجرا شده است. در این طراحی تعقیب ورودی از سوی خروجی در حالت حلقه بسته تضمین شده است. این روش با توجه به استفاده از فازی تا حدودی ار پیچیدگی­های ریاضی مساله کاسته اما با این وجود با استفاده از فازی نوع دوم و شبکه­های عصبی باز هم می­توان آن را ساده­تر کرد ضمناً برای تضمین پایداری سیستم می­توان از روش لیپانوف و . . . استفاده نمود.
  2. دومین مورد مقاله­ایست که در سال 2008 در مجلۀ بین­المللی Information & Mathematic Science به چاپ رسیده است[48]. در این مقاله می­توان گفت مطلبی را که ما در بالا در مورد مقالۀ قبلی بیان کردیم، مد نظر قرار گرفته شده و به کمک فازی نوع دوم ساده­سازی به حد مطلوب رسیده و به کمک تکنیک لیاپانوف پایداری هم تضمین شده است. نتایج شبیه­سازی نیز بیان­گر تاثیر کنترل کنندۀ تطبیقی بر کارایی کل سیستم می­باشند. شاید ایرادی که بتوان به این طراحی وارد دانست این باشد که این کنترل کننده در سیستم­ها با تأخیر زمانی به خوبی عمل نمی­کند. که در مورد بعدی راه حل این مشکل هم تا حدودی بیان شده است.
  • در سال 2009 مقاله­ای منتشر شد که به کمک کنترل تطبیقی کنترل کننده­ای را در آن طراحی کرده بودند که عمل ردگیری را در سیستم­های غیرخطی ناشناخته که دارای تأخیر طولانی هستند را به خوبی انجام می­داد [48]. این طراحی توانست که به خوبی خطای حالت ماندگار را نیز کاهش دهد. اما مشکل این کار در مواجهه با سیستم­های پیچیده آشکار می­شد. شاید دلیل آن هم ناتوانی این روش در ساده­سازی ریاضی سیستم باشد.
  1. حضور و تأثیر توأم شبکه­های عصبی، منطق فازی و کنترل تطبیقی (ANFIS)[5] به خوبی نقش خود را در کنترل سرعت موتور القایی در مقاله­ای که در سال 2010 به چاپ رسید [49] نشان می­دهد. این ترکیب از کنترل کننده­ها به قدری مفید واقع شده که تولباکسی در Matlab به همین نام موجود است. به این نحوه که با تنظیم خودبه­خودی پارامترهای سیستم و انتخاب بهینه­ترین حالت از نظر خود با در نظر گرفتن خروجی­های سیستم کارایی بسیار مناسبی را نیز به دست می­دهد. این مقاله علاوه بر این می­تواند منبع آموزشی مناسبی برای علاقه­مندان باشد. سادگی ریاضی، کارایی مناسب، سرعت عمل و دقت خوب از ویژگی­های این نوع طراحی است. اما شاید بتوان گفت که تنها موردی که برای این نوع طراحی ایراد محسوب می­شود این است که سیستم در کاربردهای متنوع ممکن است در انتخاب بهینه­ترین حالت دچار مشکل شود. راه حل مستقیمی برای این مشکل وجود ندارد ولی با استفاده از تئوری کنترل بهینه و با صرف کمی خلاقیت ریاضی به بهای پیچیدگی کمی بیشتر، این نقیصه به راحتی قابل رفع است.

از سال 2010 به بعد کارهای جدی­تری و البته در کاربردهای خاص در این زمینه انجام گرفته و هر کدام نیز نتایج خوبی را به دست داده­اند. بعضی از تحقیقات نیز جنبۀ کلی­تری داشتند که بررسی آن­ها می­تواند در این پایان­نامه کمک حال ما باشد. در ادامه به چند مورد به اختصار اشاره کرئه و توضیحات تکمیلی و تحلیلی را به آینده و متن اصلی پایان­نامه واگذار می‌کنیم.

  • مقالۀ اول در سال 2011 به چاپ رسیده و طراحی کنترل کنندۀ تطبیقی را برای سیستم­های T-S فازی با پارامترهای نامعلوم و خطای عملیاتی را بیان می­کند [51].
  • مورد بعدی و در سال 2012 طراحی کنترل کنندۀ تطبیقی برای سیستم­های غیرخطی است که در آن تابع تبدیل سیستم به کمک منطق فازی تقریب زده شده است [52].
  • و مقالۀ بعدی استفاده از تکنیک کنترل تطبیقی مقاوم در طراحی برای سیستم­های غیرخطی نامعلوم است که بیانی کلی از این طراحی را به خوبی آورده است و می­تواند منبع تحقیقی مناسبی باشد. این مقاله نیز در سال 2012 به چاپ رسیده است [53].

مقالات و پایان­نامه­های دیگری هم هستند که در این زمینه اشاراتی دارند اما موارد مذکور شاید در نوع خود به لحاظ ارتباط با موضوع تحقیق ما نزدیکتر و قابل حصول­تر باشند. اما در اگر آینده نیز منبع مناسب دیگری را هم به دست بیاوریم در به کارگیری و تحلیل آن و استفاده در بهبود کار خود درنگ نخواهیم کرد.