موضوع: "بدون موضوع"
پایان نامه : سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب كبالت (II) و روی II)) از محلولهای آبی و اندازهگیری با اسپکترومتری جذب اتمی شعله
جمعه 99/10/26
امروزه در جهان بسیاری از مردم به دلایل بلاهای طبیعی، جنگ و زیر ساختهای ضعیف خالص سازی آب، به آبی بهداشتی دسترسی ندارند. بر طبق آمارهای موجود و به نقل از سازمان جهانی بهداشت، حدود یك میلیارد نفر به منابع آبی سالم و بهداشتی دسترسی نداشته و این میزان چیزی حدود یک ششم جمعیت کره زمین را در بر می گیرد.
فلزات سنگین به دلیل تجمع زیستی شان، عدم زیست تخریب پذیریشان، سمیتشان به عنوان تهدیدی جدی برای بشر محسوب می شوند. رشد صنعت و کاربرد فلزات سنگین در فرایند های صنعتی زیاد، منجر به افزایش غلظت فلزات سنگین در فاضلاب ها و محیط شده، بنابراین جداسازی و حذف آن ها از آب های آلوده، پساب ها و آب آشامیدنی بسیار ضروری می باشد.
روش های مختلفی برای حذف فلزات سنگین از آبهای صنعتی به كار میروند از جمله : رسوب دهی شیمیایی، انعقادو ته نشینی، انعقاد
الكتریكی، كاربرد رزین های تبادل یون، فرایند های جداسازی غشایی (اسمز معکوس، نانو فیلتراسیون، الکترو دیالیز)، جذب سطحی(جاذب های متداول اصولاً شامل کربن فعال، زئولیت، خاک رس، موادپلیمری و زیست توده می باشد.) وجداسازی مغناطیسی.
آنچه در این مبحث، بیش از بیش دنبال آن هستیم، ایجاد بستری مناسب، برای دستیابی به آبی سالم، با کیفیت و مقرون به صرفه است. به یمن استفاده از شیوه های جدید مخصوصاٌ نانوتکنولوژی در تصفیه آب، شرایط ذکر شده برای ما میسر گردیده است، بطوریکه با توجه به حذف موثر آلاینده ها و کاهش هزینه های تمام شده تولید آب سالم، استفاده از این فناوری ها، نسبت به روشهای قدیمی بیشتر مورد توجه و استقبال قرار گرفته است. از میان تکنولوژی های متداول به منظور جداسازی یون های فلزی سنگین از محلول های آبی، برای برطرف کردن نواقص و کاستی های این روش ها، جاذب نانو ذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت که در آن تکنولوژی جداسازی مغناطیسی با فرایند جذب سطحی ترکیب شده به کار رفته است.
هیدروکسی آپاتیت به دلیل ظرفیت جذب بالای فلزات سنگین، جذب سریع، حلالیت کم در آب، زیست- سازگاری، در دسترس بودن، سهولت تهیه، هزینه ی پایین و پایداری در مقابل ترکیبات اکسنده و کاهنده یک ماده ی ایده ال برای جداسازی فلزات سنگین می باشد.
تثبیت HAP بر سطح نانو ذرات مغناطیسی منجر به رفع مشکل برگشت ناپذیری، افزایش بازده فرایند جذب و بازیافت جاذب، جذب انتخاب پذیر و اختصاصی، بالا رفتن سرعت جذب، جلوگیری از اکسیداسیون سریع هسته اکسید آهن در محیط آبی شده وامکان جداسازی سریع و ساده ی جاذب با اعمال یک میدان مغناطیسی را فراهم می کند. بنابراین می توان انبوهی از فاضلاب را در دوره ی زمانی خیلی کوتاه بدون تولید هیچ آلودگی، با عملیات ساده، اقتصادی و راندمان بالا تصفیه نمود.
در این پایان نامه در فصل اول به توضیح نانو فناوری، نانو ذرات، نانو ذرات مغناطیسی، طبقه بندی مواد از لحاظ مغناطیسی، نانو ذرات اکسید آهن، روش های سنتز و کاربرد نانو ذرات اکسید های آهن، اصلاح سطح، هیدروکسی آپاتیت، خواص هیدروکسی آپاتیت، روش های سنتز و کاربرد هیدروکسی آپاتیت، پرداخته شده است. در فصل دوم اثرات فلزات سنگین بر روی انسان و محیط زیست، ضرورت جداسازی فلزات سنگین از آب، کاربرد فناوری نانو در صنعت آب، روش های جداسازی فلزات سنگین، جاذب γ-Fe2O3@HAP، مروری بر مطالعات قبلی مورد بررسی قرار گرفته است. در فصل سوم مواد، تجهیزات مورد استفاده و روش کارهای انجام شده بیان شده. در فصل چهارم به تجزیه و تحلیل و بیان نتایج حاصل از تحقیق و پیشنهادات پرداخته شده است.
پایان نامه ارشد: بررسی تغییرات میدان الکتریکی در ساختار نانونقطه کوانتومی با نانو پوسته فلزی و جدا کننده دی الکتریک
جمعه 99/10/26
روش حل پراکندگی توسط یک کره از زمانهای خیلی قبل وجود داشته است. در 1908، مای به منظور توضیح رنگ های متنوع در جذب و پراکندگی توسط ذرات کلوئیدی کوچک طلا معلق در آب، این تئوری را توسعه داد. کار دبای که موضوع پایان نامه دکترایش، به فشار تابشی بر ذرات کروی مربوط میشد. او به جای کار کردن مستقیم با مولفههای بردارهای میدان ؛ تابع پتانسیل[1] مشتق شده از بردار هرتز[2] را به کار برد،همان کاری که مای انجام داد[1].
مقاله مای )1908(تحت عنوان «ملاحظات اپتیکی در محیط های غیرشفاف[3]، به خصوص ذرات طلای کلوئیدی» تنها بیانی از فرمول های پراکندگی نیست؛ بلکه به علت هر دو جنبه آزمایشگاهی و محاسباتی اهمیت داشته است[2]. محاسبه رنگ های تابان که از ذرات فلزی کلوئیدی پراکنده میشوند، توسط فارادی( 1857) مطالعه شد .[3]
کارهایی که در پراکندگی مای )1908( مرجع قرار گرفته بودند توسط افراد زیر ارائه شدند[1] :
تامسون[4] (1893) در مورد کره های کاملاً بازتاب کننده،
ریلی[5] در مورد کره های دی الکتریک کوچک
و لورنز[6] (1898،1880 ) در مورد کره های جاذب کوچک.
هر چند این تئوری توسط چندین محقق قبل از مای کار شده بود و حتی تاریخچه آن به نیمه قرن نوزدهم بر می گردد . لوگان[7] (1965-
1962) یک تاریخچه قابل ملاحظه را دنبال کرده است، کلبش[8]در 30 اکتبر 1861 مقالهای تحت عنوان «درباره بازتاب روی یک سطح کروی» ارائه داد و در 1863 منتشر شد. یک سال قبل از اینکه تئوری الکترومغناطیس نور توسط ماکسول پیشنهاد شود. در این مقاله کلبش حل کلی برای معادله موج کشسان بر حسب تابع موج برداری به دست آورد، که توسط نویسنده های بعدی استفاده شد. هر دولورنز (1890،1898) و دبای (1909)کار کلبش را مرجع قرار دادند.
مسئله موج کشسان بسیار پیچیده تر از هر دو مسئله موج الکترومغناطیسی یا صوتی است. حل اخیر می توان از تجزیه تحلیل کلبش با قرار دادن سرعت انتشار امواج طولی به سمت بی نهایت به دست آورد برای کسب اطلاعات بیشتر میتوان به کتاب پراکندگی نور کرکر[9] (1969) مراجعه نمود[1].
نه مای و نه دبای هیچ کدام جز اولین کسانی نبودند که یک جواب برای مسئله کره به دست آورده بودند. تعیین اینکه دقیقاً چه کسی در این امر اولین بوده کار ساده ای نیست. هر چند لورنز یک مدعی قوی برای این افتخار است.
حل کره روکش شده توسط کرکر و ادن[10] (1951) برای اولین بار انجام شد؛ که می توان آن را به کره چندلایه تعمیم داد [2].
در سال 1975 ، ایساكی و همكاران[11] برای نخستین بار مفهوم سیمهای كوانتومی و نقاط كوانتومی را ارائه دادند[4] . در سال 1982، دو دانشمند روسی به نـامهای اکیموف[12] و اوموشچنکو[13] مشاهده اولین محدودیت کوانتومی [14]را گزارش کردند [5]. پیشرفت منظم نقاط کوانتومی در علم و فن آوری پس از سال 1984 به دست آمد، زمانی که لوئیس بروس[15] رابطه بین اندازه و گاف انرژی نانو ذرات نیمه هادی به دست آورد [6,7]. با این حال برای ساخت موفقیت آمیز نقاط کوانتومی کلوئیدی Cdx(x=S,Se,Te) توسط ماری[16] و همکاران با اندازه قابل تنظیم زمانی نزدیک به یک دهه به طول انجامید [8].
با گسترش روز افزون علم نانو دریچه های جدیدی در دنیای علم گشوده شده است به گونه ای که توسعه این علم در دهههای اخیر امکان ساخت طیف جدیدی از ادوات را فراهم آورده است[9] . علم نانو با ورود به دنیای اپتیک امکان ساخت ادوات نوری متنوعی را فراهم آورده است. ساختارهای نانویی بازتابنده و جذب کننده نور با بازدهی بالا برای محدودهی وسیعی از وسایل اپتو الکترونیک[17] و سیستم های کاربردی به کار می رود. از سلولهای خورشیدی[18] و آشکارسازهای[19] ساده گرفته تا بازتابنده های پیشرفته نور مبنی بر کاربرد هایش؛ شامل آنهایی که برپایهی جذب چند فوتونی نور[20] اند. از این دید گاه میتوان به جذب دو فوتونی فلورسانس القایی[21] به عنوان یک پدیده اپتیک غیر خطی قدرتمند اشاره کرد ؛ که برای کابردهای تصویربرداری زیستی به خصوص برای تصویربرداری از بافت های عمیق [10] و برای فوتو دینامیک درمانی[22] [11] به کار میرود. در فوتو دینامیک درمانی فوتونی که توسط دو فوتون کم انرژیتر تولید شده برای تولید گونه های اکسیژن واکنش دار[23] یاخته سمی در بافت سرطانی استفاده می شود. در مورد اخیر، متمرکز کردن اشعه نزدیک مادون قرمز[24] در بافت سرطانی -که به نزدیک مادون قرمز نسبتاً شفاف است – میتواند در نفوذ بافت عمیق و به تبع آن تخریب انتخابی سلول های بدخیم از طریق جذب دو فوتونی فلورسانس القایی مؤثر-تولید ROS واداشته شده را نتیجه دهد[11]. با توجه به نانو ساختارها برای تصویر برداری زیستی بر مبنای TPAF یک نیاز بلند مدت به فلوئورفورهای[25] TPAF غیرسمی در بالاترین درخشندگی قابل حصول وجود دارد. به دلیل مزایای متعدد نقاط کوانتومی بر دیگر فلوئورفورها ،از جمله: الف)طیف جذبی پهن و خصوصیات اختیاری نشر قابل تنظیم؛ ب)بازده کوانتومی بالا؛ ج)پایداری فوتوشیمیایی نسبتاً بالا و د)سطح مقطع جذب دو فوتونی نسبتاً بزرگ، نقطه های کوانتومی[26] نیمه رسانا توجه زیادی را به عنوان نانو ذره TPAF به خود جلب کرده است [12]. نقاط کوانتومی نیمههادی با تحریک الکتریکی توسط گسترهی وسیعی از طول موجها در فرکانسهای کاملاً مشخصی به فلورسانس میپردازند، به این شکل که فرکانسی از نور را جذب کرده و در فرکانسی مشخص- که تابع اندازه آنهاست- به نشر نور میپردازند. نقطه های کوانتومی عمدتاً در کاربرد های اپتوالکترونیک مانند لیزر های نیمه هادی، آشکار سازهای نوری یا حافظه های نوری استفاده میشوند.
فصل دوم را با نقطه های کوانتومی شروع میکنیم. ابتدا نگاهی تاریخی به نقاط کوانتومی داریم وسپس از دید فیزیکی به آن میپردازیم. نقطه های کوانتومی نانو بلورهای نیمه رسانای با ابعاد بین 2 تا 10 نانومتر هستند که قطر فیزیکی آنها از شعاع اکسیتون بوهر[27] کوچکتر است. بنابراین شعاع اکسیتون و اثر تحدید کوانتومی[28] و بررسی تغییر اندازهی نقطه کوانتومی با تغییر در خواص اپتیکی را بیان میکنیم.
در این مسیر برای به کار بردن تابع دی الکتریک فلز نجیب، از مدل درود[29] بهره میگیریم. ثابتهای اپتیکی فلزات نجیب از زمان درود اندازه گیری شدهاند. برای مقایسه با تئوری، تلاش مداومی برای افزایش دقت آزمایشگاهی صورت میگرفت. از نتایج اولیه دیده شد که تئوری الکترون آزاد درود در ناحیه مرئی و فرابنفش ناموفق بود. بعد از تئوری کوانتوم، تشخیص داده شده بود که جذب در ناحیه مرئی و فرابنفش، به علت گذار از نوار پر d به نوار رسانشsp بوده است. ذکر این نکته ضروری است که در این رساله تأثیر گذار درون نواری در ثابت دی الکتریک فلزات در نظر گرفته نشده است. زیرا این اثر در محدوده طول موج فرابنفش و مرئی اتفاق میافتد و محدوده طول موجی که اینجا بررسی می شود 800 تا 950 نانومتر است[13].
چون ضخامت فلز از مرز چند نانومتر تجاوز نمیکند اصلاح مدل درود به علت کاهش پویش آزاد میانگین الکترون ها[30] را نیز بررسی مینماییم . هنگامی که مقیاس طول فلز قابل مقایسه یا کمتر از پویش آزاد میانگین الکترون ها باشد، در نتیجه حرکت الکترون های آزاد توسط مرزهای فیزیکی ساختار فلزی محدود می شود. و مسیر میانگین متوسط الکترون های آزاد کاهش مییابد. بنابر این مدل درود برای فلزات خیلی نازک باید اصلاح شود. در فصل دوم این اصلاح در مدل درود انجام میدهیم. با استفاده از نرم افزار متلب[31] قسمت موهومی و حقیقی تابع دی الکتریک را برای مس، طلا و نقره رسم مینماییم.
در فصل سوم از معادلات ماکسول[32] شروع کرده و بسط یک موج تخت را بر حسب هماهنگهای کروی برداری مینویسیم. سپس تعامد هماهنگهای کروی را اثبات میکنیم و ضرایب بسط موج تخت تابشی را بهدست میآوریم. با توجه به رابطه میدان مغناطیسی و الکتریکی و با توجه به خواص هماهنگ های کروی برداری و بسط میدان الکتریکی و مغناطیسی بر حسب این هماهنگها و شرایط مرزی؛ ما به یک دستگاه معادلاتی دوازده معادله و دوازده مجهول میرسیم با استفاده از نرم افزار متمتیکا[33] به صورت تحلیلی این دستگاه معادلاتی را حل نموده و حال که ضرایب بسط به دست آمدند ما میدان الکترومغناطیسی را در هر موقعیتی داریم و میتوانیم میدان الکتریکی در هر موقعیتی را نسبت به میدان تابشی اولیه بهدست آوریم. هر چه افزایش میدان الکتریکی بیشتر باشد اثر فوتودینامیک درمانی و تصویربرداری از بافتهای سرطانی بهتر انجام میگیرد.
در فصل چهارم نمودار افزایش میدان الکتریکی را به عنوان تابعی از پارامترهای مختلف از قبیل ضخامت لایه دی الکتریک،طول موج،شعاع نقطه کوانتومی،گذردهی نسبی دی الکتریک رسم می نمائیم.
در نهایت نتیجه گیری و پیشنهادهایی برای ادامه کار را در فصل پنجم ارائه میدهیم
پایان نامه ارشد: استفاده از روش تجزیه بندرز در طراحی شبکه توزیع در زنجیره تامین دو سطحی با تابع تقاضای تصادفی
جمعه 99/10/26
برای پاسخ دادن به شرایط در حال تغییر در عرصه اقتصاد و تجارت، و نیز تاثیر مسایل مربوط به جغرافیای سیاسی[1] و فناوریهای مخرب، شرکتهای تولیدکننده محصولات صنعتی مجبور شدند تا مبادرت به انجام برنامهریزی استراتژیک، که شامل طراحی شبکه زنجیر تامین[2] (SCND) میشود، نمایند. بویژه در صنعت خودروسازی، عوامل فراوانی چون بازارهای آسیایی، معرفی فرآوردههای جدید مثل خودروهای هیبریدی[3] و برقی، ادغام شرکتها در یکدیگر و به تملک درآمدن شرکتها توسط شرکتهای دیگر، نرخ برابری ارزهای در حال نوسان، هزینههای مربوط به سوخت که به طور فزاینده بر نوسانات آن افزوده میشود، شرکتها را بر آن داشت تا اقدام به تجزیه و
تحلیل و بهبود استراتژیهای مربوط به زنجیره تامین خود نمایند. بعلاوه، زنجیرههای عرضه تولید صنعتی مدرن با مشتریانی روبهرو است که خواهان افزایش در تنوع فرآوردهها، چرخه حیات محصول کوتاه مدتتر، هزینه پایینتر، کیفیت بهتر و واکنش سریعتر هستند. برای موفقیت در بازارهایی که به شکل فزایندهای جهانی گردیده و رقابتی است، شرکتها باید پیوسته تلاش کنند تا در حالی که برای رویارویی با این شرایط غیره منتظره برنامهریزی میکنند، از هزینههای زنجیره تامین بکاهند و خدمات مشتریان را بهبود دهند] 1[.
طراحی شبکه زنجیره تامین، عبارت است از برنامهریزی استراتژیک زنجیرههای تامین، که به تعداد، موقعیت مکانی، و ظرفیت تاسیسات و مراکز توزیع، فناوری تولیدی که در هر یک از تاسیسات بکار گرفته میشود، انتخاب عرضهکننده، تصمیمات در خصوص مسأله ساختن یا خریدن[4]، و طراحی شبکه حمل و نقل مربوط میشود] 2[. طراحی شبکه زنجیره تامین، فناوری، فرآیند و داراییهای تولیدی یک شرکت ظرف سالهای آینده را مشخص میکند، سالهایی که طی آن شرکت باید دارای توان رقابت با شرکتهای دیگر را داشته باشد و همچنین بتواند تقاضاهای مشتریان را به بهترین نحو برآورده نماید.
علاوه بر این، معمولا تصمیمات استراتژیک مستلزم هزینههای سرمایهگذاری بالا هستند، هزینههایی که به راحتی قابل بازگشت نیستند. بنابراین، برای موفقیت بلند مدت هر شرکت تولیدی، طراحی شبکه زنجیره تامین بسیار ضروری است. چهار جنبه اصلی این مساله عبارتند از (1) توپولوژی یا مکانشناسی[5] زنجیره تامین، (2) زمانبندی تصمیمات، (3) لحاظ کردن عدم قطعیت به دلیل تصادفی بودن[6] دادههای ورودی، و (4) هدف حداکثر کردن سود] 3[. برای پشتیبانی از مدیران هنگام اتخاذ تصمیمات در مورد این مسأله به شدت پیچیده، به مدلهای کمی، مبتنی بر داده[7] نیاز است] 2[. در این پایان نامه، سعی میشود در راستای مدلکردن واقعیتر شبکه توزیع در سیستمهای زنجیره تامین، این شبکه با در نظر گرفتن تقاضاهای تصادفی و با استفاده از روش برنامهریزی تصادفی دو مرحلهای فرموله شود.
1-2- بیان مسأله
در این پایان نامه، یک مسأله طراحی شبکه توزیع در یک سیستم زنجیره تامین مورد مطالعه قرار میگیرد. این مسأله شامل مکانیابی کارخانهها و انبارهای توزیع و تعیین بهترین استراتژی برای توزیع محصول از کارخانهها به انبارهای توزیع و از انبارهای توزیع به خردهفروشها است. هدف این مسأله عبارت است از پیدا کردن تعداد، مکان و ظرفیت بهینه برای کارخانهها و انبارهای توزیع طوری که تقاضای خرده فروشها برآورده شده و هزینه کل طراحی شبکه کمینه شود. برخلاف اکثر تحقیقات انجام شده در زمینه طراحی شبکه توزیع زنجیره تامین، در این تحقیق فرض میشود که گزینههای مختلف برای ظرفیت کارخانهها و انبارهای توزیع وجود دارد. همچنین در این تحقیق یک شبکه توزیع چند محصولی در نظر گرفته میشود، یعنی توزیع بیش از یک محصول مدنظر است. در نهایت، تقاضا به صورت احتمالی در نظر گرفته شده، سعی در مدلسازی این مسأله با استفاده از رویکرد برنامهریزی احتمالی دو مرحلهای میشود. در برنامهریزی احتمالی دو مرحلهای متغیرهای تصمیم به دو دسته تقسیم میشوند: متغیرهای مرحله اول که شامل تصمیمهای استراتژیک بلند مدت هستند و متغیرهای مرحله دوم که شامل تصمیمهای عملیاتی و کوتاه مدت هستند. در مدل مورد مطالعه تصمیمهای مرحله اول عبارتند از: تعیین تعداد، مکان و ظرفیت کارخانهها و انبارهای توزیع و تصمیمهای مرحله دوم عبارتند از نحوه انتقال محصولات از کارخانهها به انبارهای توزیع و از انبارهای توزیع به خرده فروشها.
دانلود پایان نامه ارشد : طراحی بهینه هندسه میدان جریان در پیل سوختی پلیمری با استفاده از الگوریتم ژنتیک
جمعه 99/10/26
26
3-2 پیدایش الگوریتم ژنتیک 27
3-3 الگوریتم ژنتیک 28
3-3-1 عملگرهای اصلی GA 29
3-3-1-1 روشهای کدگذاری 29
3-3-1-2 جمعیت اولیه 31
3-3-1-3 تابع برازندگی 32
3-3-1-4 انتخاب 32
3-3-1-4-1 انتخاب چرخ گردان (RWS) 33
3-3-1-4-2 انتخاب رقابتی 34
3-3-1-5 ادغام 35
3-3-1-6 جهش 37
3-3-1-6-1 احتمال جهش )) 38
3-3-1-7 سایر عملگرهای ژنتیکی 38
3-3-2 الگوریتم ژنتیک با نخبه سالاری ساده 38
3-3-3 روشهای جایگزینی 39
3-3-4 معیار همگرایی 40
3-3-5 معیار عملکرد 41
3-3-6 تفاوت GA با روشهای مرسوم بهینهسازی ]21[ 41
3-3-7 نقاط قوت GA 42
3-3-8 نقاط ضعف GA 42
3-3-9 در چه مواقعی از GA استفاده میشود 43
3-3-10 کاربردهای GA 43
3-4 بهینه سازی پارامتر های فرآیندی پیل سوختی با استفاده از الگوریتم ژنتیک 44
3-4-1 استفاده از حل تحلیلی در الگوریتم ژنتیک حاضر 44
3-4-1-1 استفاده از آزمایشات عملی 45
3-4-1-2 استفاده از حلCFD 46
3-4-1-3 استفاده از حل تحلیلی 46
3-4-2 تعریف تابع برازندگی 47
3-4-3 برنامه نویسی در محیط Manuscript File نرم افزار MATLAB 48
3-4-4 استفاده از الگوریتم ژنتیک نخبه گرا 48
3-4-4-1 کدگذاری مقادیر پارامترها 48
3-4-4-2 انتخاب تعداد جمعیت اولیه و تعداد نسل ها 49
3-4-4-3 اعمال اپراتور پیوند و جهش در الگوریتم ژنتیک حاضر 50
3-4-5 استفاده از Lookup Table در محیط MATLAB Simulink 50
3-4-6 دلیل انتخاب 3 پارامتر حاضر جهت بهینهسازی 52
فصل چهارم: 53
4-1 مدلسازی پیل سوختی پلیمری با استفاده از حل تحلیلی 54
4-1-1 مدلسازی کانال 54
4-1-2 مدلسازی MEA 55
4-1-3 متدولوژی حل معادلات 57
4-2 معتبر سازی مدلسازی با آزمایشات عملی 57
4-3 پارامترهای ثابت مدلسازی 61
فصل پنجم: 62
5-1 مقادیر برازندگی های به دست آمده از حل تحلیلی 63
5-2 اجرای الگوریتم ژنتیک لینک شده با MATLAB Simulink 63
5-3 تاثیر دما بر عملکرد پیل سوختی 65
5-4 تاثیر فشار بر عملکرد پیل سوختی 66
5-5 اهمیت فشار آند نسبت به فشار کاتد 67
5-6 نمودارهای سه بعدی دما-فشار 70
فصل ششم: 72
6-1 نتیجه گیری 73
6-2 پیشنهادات 74
فهرست مراجع 75
پیوست الف 78
برنامه MATLAB لینک شده با MATLAB Simulink 78
پیوست ب 84
جداول Simulink و منحنی های دو بعدی و سه بعدی بیشینه توان 84
فهرست اشکال
فهرست اشکال 11
شكل (1-1) ایجاد جریان الكترسیته مستقیم از پیل سوختی در یك مرحله ]2[ 3
شكل (2-1) روند توسعه پیل سوختی] 2[ 12
شكل (2-2) پیلهای سوختی در آپولو ] 2 [ 13
شكل (2-3) خودرویی با سوخت هیدروژنی ]2[ 14
شكل (2-4) انتشارات ثبت شده سالانه در جامعه جهانی ] 2 [ 15
شكل (2-5) انواع پیل سوختی همراه با نوع واكنش و دمای كاركرد آنان ]2[ 18
شكل (2-6) اساس عملكرد پیل سوختی پلیمری ]2[ 19
شكل (2-7) مجموعهای از كاربردهای مختلف پیلهای سوختی ]2[ 23
شكل (3-1) طبقهبندی كلی روشهای بهینهسازی] 19[ 27
شكل(3-2 ) نمودار گردشی الگوریتم ژنتیک 30
شكل (3-3) انتخاب چرخگردان 34
(شکل 3-4) پیوند یک نقطهای 36
شکل (3-5) الگوریتم ژنتیک با بکارگیری مفهوم نخبهسالاری 40
شكل (3-6) تعیین مقدار ماکزیموم بعنوان تابع برازندگی 47
شکل (3-7) نمودارالگوریتم ژنتیک بکار گرفته شده در تحقیق حاضر 49
شکل (3-8) بلوک دیاگرام مورد استفاده درفشار جزیی آند 5 بار 52
شکل (4-1) روند حل معادلات پیل سوختی 57
شکل (4-2) پیل سوختی و دستگاه تست پژوهشگاه دانشگاه 58
C60 و فشار متغیر 59
شکل (4-4) مقایسه نتایج مدلسازی و آزمایشات عملی در فشار ثابت 1 بار و دمای متغیر 60
شکل (5-1) سرعت همگرایی الگوریتم ژنتیک لینک شده باMATLAB Simulink ُُُ 64
C75 67
شکل (5-3) ماکزیمم توان پیل سوختی در فشارهای مختلف سمت کاتد. فشار آند و دمای کارکردی پیل سوختی ثابت و برابرمقادیر بهینه 68
شکل (5-4) منحنی های پلاریزاسیون پیل سوختی در فشارهای مختلف سمت کاتد. فشار آند و دمای کارکردی پیل سوختی ثابت و برابر مقادیر بهینه 68
شکل (5-5) ماکزیمم توان پیل سوختی در فشارهای مختلف سمت آند. فشار کاتد و دمای کارکردی پیل سوختی ثابت و برابر مقادیر بهینه 69
شکل (5-6) منحنی های پلاریزاسیون پیل سوختی در فشارهای مختلف سمت آند. فشارکاتد و دمای کارکردی پیل سوختی ثابت و برابر مقادیر بهینه 70
شکل (5-7) ماکزیمم توان به ازای دما و فشارهای مختلف آند. فشار کاتد ثابت و برابر فشار بهینه کاتد 71
شکل (5-8) ماکزیمم توان به ازای دما و فشارهای مختلف کاتد. فشار آند ثابت و برابر فشار بهینه آند 71
شکل (ب-1) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 5 بار 95
شکل (ب-2) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 5/4 بار 96
شکل (ب-3) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 4 بار 97
شکل (ب-4) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 5/3 بار 98
شکل (ب-5) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 3 بار 99
شکل (ب-6) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 5/2 بار 100
شکل (ب-7) بیشینه توان بر حسب دمای سلول و فشار کاتد، فشار آند ثابت و برابر 2 بار 101
فهرست جداول
جدول (3-1) دامنه مقادیر در نظر گرفته شده برای پارامترها 49
جدول (3-2) مقادیر پارامترهای الگوریتم ژنتیک 50
جدول (4-1) مشخصات MEA مورد استفاده 58
جدول (4-2) مقادیر پارامترهای هندسی و نرخ جریان ورودی در دو طرف 60
جدول (4-3) مقادیر پارامترهای مدلسازی پیل سوختی پلیمری 61
جدول (5-1) مقادیر بهینه به دست آمده از الگوریتم ژنتیک برای پارامتر های فرآیندی 64
جدول (5-2) مقایسه مقادیر بهینه بدست آمده با آزمایشات عملی سلیمان و همکارش ]1[ 65
جدول (ب-1) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 5 بار 85
جدول (ب-2) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 5/4 بار 86
جدول (ب-3) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 4 بار 87
جدول (ب-4) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 5/3 بار 88
جدول (ب-5) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 3 بار 89
جدول (ب-6) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 5/2 بار 90
جدول (ب-7) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 2 بار 91
جدول (ب-8) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 5/1 بار 92
جدول (ب-9) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 1 بار 93
جدول (ب-10) مقادیر ماکزیمم توان برای دماها و فشارهای کاتد مختلف، فشار آند ثابت و برابر 5/0 بار 94
لیست علائم و اختصارات
سطح (cm2)
غلضت مولی (mol cm-3)
ضریب نفوذ (cm2 s-1)
پتانسیل الکتریکی (V)
ثابت فارادی (96,487 C mol-1)
ارتفاع کانال (cm)
چگالی جریان (A cm-2)
چگالی جریان (A cm-2)
چگالی جریان مرجع (A cm-2)
قابلیت نفوذ
وزن مولکولی (kg mol-1)
نرخ جریان مولی (kg cm-2 s-1)
فشار (Pa)
ثابت جهانی گازها (8.314 J mol-1 K-1)
نرخ مصرف (mol s-1cm-2)
دما (K)
سرعت سیال در کانال (cm s-1)
سرعت در راستای عمود بر صفحه غشا (cm s-1)
ولتاژ سلول (V)
مختصات راستای کانال (cm)، کسر مولی
مختصات عمود بر صفحه غشا (cm)
ضریب خالص انتقال آب، ضریب انتقال بار
ویسکوزیته گاز (kg m-1s-1)
پتانسیل اتلافی (v)
چگالی (kg m-3)
ویسکوزیته سینماتیکی (cm2 s-1)
بالا نویس
شمارنده
مقدار مرجع
مقدار موثر
زیر نویس
کانال
مقدار موثر
سمت آند
سمت کاتد
هیدروژن
آب
اکسیژن
فعال
حالت پایه
کاهش اهمی
کلی
پخش آند
پخش کاتد
اختصارات
GA الگوریتم ژنتیک
MEA مجموعه غشا
CFD دینامیک سیالات محاسباتی
پیش گفتار
دو مشكل اساسی در استفاده از سوختهای فسیلی كه بیش از %80 تقاضای انرژی مورد مصرف را تشكیل میدهند وجود دارد. مشكل اول در محدودیت آنهاست بهطوریكه در آیندهای نزدیك این سوختها به پایان میرسند. براساس تخمینی كه كمپانیهای نفتی ارائه كردهاند، بین سالهای 2015 تا 2030 میزان مصرف نفت خام، گازطبیعی و سوختهای فسیلی به بیشترین مقدار خود میرسند و از آن پس منابع فسیلی با كاهش چشمگیری روبرو خواهند بود.
مشكل دوم در استفاده از سوختهای فسیلی، مشكل زیست محیطی آنان است مانند تغییرات آبوهوایی، گرمشدن كلی محیط، ذوب شدن یخهای موجود در كره زمین، ایجاد بارانهای اسیدی، نقصان لایه ازن، خرابی مناطق كشاورزی و جنگلها بعلت استخراج بیش از اندازه زغالسنگ از معادن و از همه مهمتر مشكل آلایندگی و آلودگی محیط زیست كه شرایط زندگی را نابسامان خواهد كرد. پیش از سال 1970، سیستمهای انرژی هیدروژنی برای رفع این دو مشكل اساسی پیشنهاد شده بود و از آن سالها دانشمندان بسیاری در جهت بكارگیری این سیستمها و توسعه آنان تلاش كردند.
هیدروژن یك انرژی قابل حمل با خصوصیات منحصر به فرد است. سوختی پاك با راندمان خروجی بالا، سبك و در دسترس است. یكی از خصوصیات ویژه آن، نوع كاربرد آن در فرآیندهای الكتروشیمی است كه میتواند در صورت كاربرد در پیلهای سوختی، انرژی الكتریكی تولید كند كه در مقایسه با انرژی سوختهای فسیلی راندمان بسیار بالاتر و مزایای ویژهای دارد. در 20 سال گذشته توسعه و بكارگیری این سیستمها قوت چندانی گرفته است.
دانلود پایان نامه ارشد : کاهش جریان نشتی در گیت قابل برنامه ریزی میدانی
جمعه 99/10/26
کاهش ابعاد مدارات دیجیتال و ترانزیستورها یکی از چالش های امروزه در طراحی و ساخت مدارات مجتمع می باشد که با توجه به نیاز روزافزون به استفاده از مدراهای مجتمع این چالش، کاهش ابعاد همراه با عوامل ناخواسته از قبیل افزایش جریان نشتی در ساختمان و معماری این مدارها می باشد. با توجه به این نکته که یکی از ابزارهای مورد استفاده در ساخت و طراحی سیستمهای دیجیتال گیت قابل برنامه ریزی میدانی می باشد که این ابزار در ساخت و طراحی بسیاری از سیستم ها کاربرد دارد (Lamoureux and Luk 2008, 338-345). این ابزار دارای اجزای مختلفی می باشد که قابلیت پیکر بندی و برنامهریزی را دارا می باشد (Lamoureux and Luk 2008, 338-345; Naji 2004, 1055-1081).
یکی از توانمندیهای گیت قابل برنامه این است که می توان هر مدار دیجیتالی را توسط این ابزار پیاده سازی کرد. گیت قابل برنامه ریزی میدانی از بلوک های های منطقی قابل پیکربندی “1” تشکیل شده است (Lamoureux and Luk 2008, 338-345). علاوه بر مورد ذکر شده در قسمت قبل اجزای دیگری نیز درگیت قابل برنامه ریزی میدانی از قبیل واحدهای محاسباتی و رابط های ورودی وخروجی که به شکل بلوک های مجزایی هستند و سوییچ های مسیریابی شکل 1-1 ،”2″ می باشند که کار این ابزار برقراری ارتباط بین بلوک های منطقی می باشد.
شکل 1-1: سوئیچ های مسیریابی
ساختار بلوک های منطقی قابل پیکربندی شکل 1-2 شامل جداول صحت”3″ می باشد که در انواع تجاری این ابزار جداول صحت شکل 1-3 معمولا دارای 4 ورودی بوده این جداول صحت قابلیت برنامه ریزی انواع توابع دیجیتال ترکیبی 4 ورودی را دارا می باشند (Ebrahimi et al 2011, 12–20).
شکل 1-2: جداول صحت
یکی از قسمت های اصلی در جداول صحت سلول های حافظه “4”می باشند که جداول درستی توابع دیجیال را نگهداری می کنند بر اساس محتویات سلول های حافظه و انتخاب سلول های مورد نظر که به ورودی یک مالتی پلکسر اعمال می گردند یک بردار به ورودی تابع دیجیتال اعمال می گردد که این بردار شامل مقادیر جدول صحت می باشد.
شکل 1-3: مالتی پلکسر چهار ورودی
بخش دیگری که از سلولهای حافظه در معماری بلوک های منطقی قابل پیکربندی استفاده می کند سوییچهای مسیریابی که ارتباط بین بلوک ها را میسر می سازند.