دانلود پایان نامه ارشد: اصلاح الکترود خمیرکربن با نانو ذرات SiO2 و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی


تشخیصDNA ، یکی از حوزه­های مهم بیولوژی مولکولی و مطالعات زیست فناوری است. تشخیص توالی بازهای خاص در نوکلئیک اسیدهای انسانی، ویروسی و باکتریایی از اهمیت بسزایی در حوزه­های متعدد برخوردار است که دارای کاربرد در تشخیص: عوامل بیماری، ارگانیسم­های آلوده کننده غذایی، تحقیقات زیست محیطی و علوم جنایی می­باشد. از زمانیکه پالیکیک، فعالیت الکتروشیمیایی نوکلئیک اسیدها را کشف کرد [1]، زیست حسگرها امیدهای تازه­ای برای ایجاد روشهای سریع، ارزان و ساده برای تشخیص نوکلئیک اسیدها فراهم ساخته­اند [2]. تشخیص یا آشکارسازی الکتروشیمیایی گونه­های زیستی براساس واکنش­های الکتروشیمیایی است که در طول فرآیندهای تشخیص زیستی اتفاق می­افتد [3] .به علت اینکه واکنش­های الکتروشیمیایی مستقیماً یک علامت الکترونیکی ایجاد می­کنند، نیازی به دستگاه­های گرانقیمت تبدیل علامت وجود ندارد. علاوه­ بر این، به علت اینکه کاوشگر می­تواند براحتی بر روی الکترودها تثبیت شود، تشخیص آن می­تواند توسط آنالیز الکتروشیمیایی ارزانقیمت انجام شود. همچنین سیستم­های قابل حمل برای آزمایشات کلینیکی و تحقیقات زیست­ محیطی توسعه یافته است [4]. ابزارهای الکتروشیمیایی، بسیار حساس، ساده و سریع بوده و براحتی به کار برده می­شوند و با فناوری­های نانو سازگاری دارند. بنابراین به نظر می­رسد، نامزدهای خوبی برای تشخیص سریع و ارزانقیمت بیماری­های ژنی و تشخیص گونه ­های بیولوژیکی پاتوژنی می­باشند.
یکی از بزرگترین چالش‌ها در قلمرو الکتروشیمی تجزیه­ای، طراحی و ساخت الکترودهایی می‌باشد که در حالت ایده‌آل بتوانند به یک گونه‌ی شیمیایی خاص به صورت کاملاً گزینش‌پذیر و با حساسیت بالا پاسخ دهند. زیست ­حسگرهای الکتروشیمیایی، دسته وسیعی از الکترودهای اصلاح شده می­باشند که امروزه بسیار مورد توجه محققین قرار گرفته­اند [5]. زیست حسگر، ابزاری است که از یک لایه فعال بیولوژیکی به عنوان جزء شناساگر استفاده می­کند تا عوامل فیزیکی برهم­کنش بیولوژیکی را به علامت قابل اندازه­گیری تجزیه­ای تبدیل کند [6]. دو عامل در طراحی یک زیست حسگر مناسب نقش ایفا می­کنند: الف) روش مناسب تثبیت پذیرنده زیستی در سطح مبدل که موجب افزایش طول عمر، حساسیت و پایداری آن می­گردد. ب) انتخاب مبدل مناسب. انواع متداول مبدل­های مورد استفاده در زیست حسگرها، شامل مبدل­های: الکتروشیمیایی  [3]، نوری (نورتابی، جذب و رزونانس پلاسمون سطح ) [9]، حساس به تغییر جرم [10] و حرارت می باشند [11]. زیست حسگرها خصوصیات و مزایای خوبی، نظیر: آسانی استفاده، سرعت تشخیص مناسب، حساسیت بالا و هزینه کمتر نسبت به روش­های طیف سنجی وکروماتوگرافی مایع با عملکرد بالا را دارا می­باشند که قادرند گونه آزمایشی مورد نظر را در غلظت­های بسیار کم در نمونه‌های بیولوژیکی اندازه­گیری کنند [14-12]. در حقیقت زیست حسگرها، می­توانند با بهره­گیری از هوشمندی مواد

 

مقالات و پایان نامه ارشد

 بیولوژیك، تركیب یا تركیباتی را شناسایی نمایند که با آنها واكنش داده و بدین ترتیب یک پیام شیمیایی، نوری و یا الكتریكی تولید کنند. اساس کار یک زیست حسگر تبدیل پاسخ بیولوژیکی به یک پیام قابل اندازه­گیری است [15]. بطور کلی هر زیست حسگر شامل، اجزای: گونه آزمایشی مورد نظر، لایه زیستی، مبدل، پردازشگر و نمایشگر است. انواع پذیرنده­های زیستی که در زیست حسگرها مورد استفاده قرار می­گیرند، شامل: آنزیم، آنتی بادی، گیرنده­های سلولی، اسیدهای نوکلئیک DNA یا RNA، میکروارگانیسم یا سلول کامل، بافت و غیره هستند [16].

یک زیست حسگر DNA، وسیله­ای است که عامل تشخیص بیولوژیکی آن، کاوشگر DNA است. کاوشگرهای DNA، الیگونوکلئوتیدهای کوتاه تک رشته­ای (ss-DNA) هستند که معمولاً کاوشگر نامیده می­شوند. دئوکسی ریبونوکلئیک اسید (DNA)، یک مولکول رمزگذار دستورالعمل­های ژنتیکی است که در تمام موجودات زنده، شناخته شده می­باشد. درشت مولکولDNA ، یک ساختار مارپیچی شبیه نردبان دارد که گروه­های فسفات و قند به طور یک در میان، نرده­های نردبان و باز­های آدنین، گوانین، سیتوزین و تیمین پله­های آن را تشکیل می­دهند که این بازها، دو به دو با یکدیگر توانایی تشکیل پیوند هیدروژنی قوی را دارند. DNA به خاطر حضورگروه­های فسفات در ساختار آن، دارای بار منفی می­باشد و از این رو خاصیت پلی آنیونی را دارد، به طوری كه بازهای آلی به سمت داخل و گروه فسفات به سمت بیرون یا در سطح خارجی درشت مولکول  DNAقرار می­گیرند. در DNA، هر رشته از نوکلئوبازها تنها با یک نوع رشته دیگر از نوکلئوبازها جفت می­شوند که به آن جفت شدن بازهای مکمل می­گویند. در ساختار دو رشته­ایDNA ، باز آدنین در مقابل تیمین با دو پیوند هیدروژنی و گوانین در مقابل سیتوزین با سه پیوند هیدروژنی قرار دارد. پس یک توالی خاص از DNA قادر است تنها به توالی مکمل خود پیوند شود [17]. در سال­های اخیر، تلاش­های زیادی برای طراحی زیست حسگرهای الکتروشیمیایی با صحت، حساسیت و انتخاب پذیری تقویت شده، انجام شده است [18]. نانوذرات می­توانند در این زمینه بسیار مفید باشند و در طراحی زیست حسگرهای الکتروشیمیایی که نسبت به سایر زیست حسگرها کارائی بالاتری دارند، به طور عمده ای استفاده ­شوند [19].
نانوذرات به عنوان یکی از مهمترین ساختارها در حوزه فناوری نانو، با توجه به اندازه کوچک آنها، خواص فیزیکی، شیمیایی و الکترونیکی منحصر به فردی را نشان می­دهند که در تهیه زیست حسگرها، بسیار مورد توجه می­باشند [20]. ویژگی­های یک ماده می­تواند به طور معنی داری با اندازه ذرات آن تغییر کند. بسیاری از خواص ماده، از جمله: ویژگی­های ساختاری، گرمایی، شیمیایی، مکانیکی، مغناطیسی و نوری در اثر کاهش اندازه ذره تغییر می­کند. در نتیجه، با استفاده از این مواد در ساخت نانوزیست حسگرها، می­توان خواص جدید و مختلفی ایجاد نمود که از آنها، بتوان برای مطالعه بهتر سیستم­های متفاوت استفاده کرد. از میان نانوزیست حسگرها، نانوزیست حسگرهای الکتروشیمیایی رشد خوبی داشته­ است ]21 [.
نانوزیست فناوری DNA،  فناوری بالقوه­ای است که از تلفیق زیست فناوری و فناوری نانو بوجود آمده است. نانوزیست فناوری DNA، از ساختار و خواص مولکول DNA جهت استفاده در زمینه زیستی، مهندسی و پزشکی بهره می­برد. هدف اساسی نانوزیست فناوری DNA، ساخت مواد با ساختار تکرار شونده، وسایل و ماشین­هایی در ابعاد نانو، توسعه­ی این ساختارها به سطوح بزرگتر (ماکروسکوپی) با استفاده از خواص ساختاری و عملکردی و برهم­کنش­های بین مولکولی DNA است. در این زمینه، یکی از مواردی که بسیار مورد توجه محققین قرار گرفته است، مطالعه و بررسی در مورد ساختار DNA و چگونگی عملکرد آن در شرایط محیطی متفاوت و برهم­کنش­های آن با ترکیبات مختلف بوده است [22]. همانطور که می­دانیم مولکول DNA یک ماده ژنتیکی است که حامل اطلاعات ژنتیکی در تمام موجودات زنده می­باشد. مولکول DNA، دارای توالی خاصی ناشی از چگونگی آرایش بازهای تشکیل­دهنده­ی آن می­باشد که این توالی سبب ایجاد خواص خاصی در هر رشته DNA می­گردد. توالی DNA جهت پردازش اطلاعات مفید بوده و سبب می­گردد که ساختار آن به صورت پایا و محکم درآید. علاوه بر این، DNA دارای خواص منحصر به فردی مانند دارا بودن ساختار هندسی در ابعاد نانو، ذخیره و کد کردن اطلاعات، خودتکثیری، خودتشخیصی ساختار و خودآرایی است [23]. امروزه، محققین تعداد زیادی از نانوزیست حسگر DNA ساخته­اند که از آنها در جهت مطالعه برهم­کنش DNA با سایر ترکیبات از جمله: داروها، پروتئین­ها و ترکیبات شیمیایی مختلفی استفاده شده است ]25،24[.
همچنین نانو مواد ، انتقال الکترون بین زیست مولکول­های تثبیت شده و سطح الکترود را آسان می­کنند. نانوذرات برای تثبیت مولکول­های زیستی­، کاتالیز واکنش­های الکتروشیمیایی، افزایش سرعت انتقال الکترون بین سطح الکترود و پروتئین، نشان دار کردن مولکول­های زیستی و حتی به عنوان واکنشگر عمل می­کنند [26]. با توجه به بزرگی سطح مؤثر و بالا بودن سطح انرژی، نانوذرات بیومولکول­ها را بشدت جذب کرده و برای تثبیت مولکول­های زیستی در ساخت زیست حسگر بکار می­روند . انواع زیادی از نانوذرات، مانند: نانوذرات اکسیدی (مثلاً 2SiO) برای ساخت حسگرهای الکتروشیمیایی و زیست حسگرها به کار گرفته شده­اند [29]. این نانوذرات برای تثبیت مولکول­های زیستی به دلیل سازگاری خوب و آماده سازی آسان، استفاده شده­اند .
DNA تلومری انسان، از تکرارهای پشت سرهم بازهای تیمین، آدنین، گوانین و سیتوزین، CCCTAA)/(TTAGGG تشکیل شده است [32]. تلومرها دارای ساختار خاصی هستند که موجب استحکام و پایداری مولکول خطی DNA می­شوند و انتهای كرموزوم را از تجزیه شدن، نوآرایی و الحاق انتهایی حفظ می­كنند. در هر تقسیم سلولی به شكل پیوسته، بخشی از طول تلومر كوتاه می­شود. كوتاه شدن پیوسته تلومر به جدا شدن یك سری از پروتئین­ها از ساختار تلومر و تغییر بیان ژن منجر می­شود. كوتاه شدن مداوم تلومر به توقف چرخه سلولی و مرگ سلولی می­انجامد [35-33]. تلومراز آنزیمی است كه بدون نیاز به الگو، موجب سنتز تلومر می­شود. این سلول­ها به كمك آنزیم تلومراز، كوتاه شدن تلومر را كه در پی تقسیم­های متوالی روی می­دهد، جبران می­کنند [36]. با این حال، آنزیم تلومراز، در حدود 90 درصد از سلول­های سرطانی، سطح بالایی از فعالیت را دارد و همین فعالیت بالا منجر به ایجاد سرطان می­گردد    . چنانچه اتصال تلومرازها به نواحی تلومری توسط برهم­کنش مولکول­های کوچک با نواحی تلومری مهار شود، به شکل مستقیم فعالیت تلومراز کاهش می­یابد.
از طرف دیگر، در رشته­های DNAی غنی از باز سیتوزین C، ساختارهایی می تواند شکل بگیرد که در آن، هر C از طریق پیوند هیدروژنی با سه C دیگر در ارتباط باشد، به شرط آنکه Cی مقابل آن به صورت همی پروتونه باشد، یعنی جفت باز C-C+ شکل بگیرد، به چنین ساختاری، ساختار i-motif می­گویند و در شرایطی تشکیل می­شود که رشته DNA غنی از باز سیتوزین باشد . ترکیباتی که با توالی­ های ذکر شده بر همکنش بدهند، قادر به مهارکردن فعالیت تلومراز می­باشند. پایداری ساختارi-motif  به تکرار توالی دارای سیتوزین، pH اسیدی ملایم، ماهیت و غلظت کاتیون­های موجود در محلول بستگی دارد. پایداری ساختار i-motif پیچ خورده در pH اسیدی ملایم، یک استراتژی خوب برای درمان سرطان است، چون می­ تواند از واکنش تلومراز در سلول سرطانی جلوگیری می­کند [41].
[1] Palecek
[2] Probe
[3] Biosensors
Luminescence
[5] Surface plasmon resonance
Deoxyribonucleic acid
Ribonucleic acid
5 Macromolecule
[9] Accuracy
Sensivity
Selectivity
Nanoparticles
[13] Nanometer scale structural geometry
[14] Information encodin
[15] Self-replicating
[16] Self-recognition of structure
[17] Self-assembly
[18] Nanomaterial
[19] Tamoxifen citrate
[20] Circular dichroism
[21] Working electrode
[22] Carbon paste electrodes

هیچ نظری هنوز ثبت نشده است
نظر دهید

آدرس پست الکترونیک شما در این سایت آشکار نخواهد شد.

URL شما نمایش داده خواهد شد.
بدعالی
This is a captcha-picture. It is used to prevent mass-access by robots.