موضوع: "بدون موضوع"

دانلود پایان نامه : مطالعه آزمایشگاهی تولید اکسید آهن در مقیاس ریزساختاری با استفاده از روش ترسیب با ضد حلال فوق بحرانی
جمعه 99/10/26
. 1-1- پیشگفتار ……………………………………………………………………………………………………………………………….. 1-2- نانو فناوری و کاربرد آن در صنعت نفت………………………………………………………………………….. …. 1-3- نانو فناوری و سیمان چاه های نفتی……………………………………………………………………………….. ….. 1-4- معرفی برخی از نانو افزودنی های مورد استفاده در سیمان…………………………………………… …. 1-5- تعریف سیال فوق بحرانی…………………………………………………………………………………………………. …. 1-6- مزایای استخراج بوسیله سیال فوق بحرانی…………………………………………………………………….. …. 1-7- کاربردهای فناوری فوق بحرانی………………………………………………………………………………………… …. 1-8- کاربرد فرآیندهای فوق بحرانی در تولید ریز ذرات…………………………………………………………. …. 1-8-1- فرآیند RESS………………………………………………………………………………………………………………. …. 1-8-2- فرآیند PGSS………………………………………………………………………………………………………………. …. 1-8-3- فرآیند SAS ، GASوPCA………………………………………………………………………………………… …. فصل دوم: مروری بر تحقیقات گذشته فصل سوم: پایلوت آزمایش . 3-1- مبانی طراحی و مشخصات پایلوت استخراج فوق بحرانی ………………………………………………. 3-2- بررسی اجزای اصلی تشكیل دهنده پایلوت فوق بحرانی…………………………………………………. 3-2-1- تأمین فشار آزمایش……………………………………………………………………………………………………….. 3-2-2- تأمین دمای آزمایش………………………………………………………………………………………………………. 3-2-3- ظرف اصلی آزمایش……………………………………………………………………………………………………….. 3-2-4- فیلتر فلزی………………………………………………………………………………………………………………………. 3-3- طراحی دستگاه آزمایشگاهی فوق بحرانی…………………………………………………………………………. 3-3-1- ظرف اصلی ……………………………………………………………………………………………………………………. 3-3-2- فیلتر فلزی……………………………………………………………………………………………………………………….
3-3-3- ظرف مایع سازی( یخچال) گاز دی اكسیدكربن………………………………………………………….. 3-3-4- پمپ فشار قوی………………………………………………………………………………………………………………. 3-3-5- سیستم گرمایش و سرمایش(مخزن آب)……………………………………………………………………… 3-3-6- سیستمهای كنترل………………………………………………………………………………………………………… 3-3-7- لوازم جانبی…………………………………………………………………………………………………………………….. 3-4- انجام تست هیدرولیک دستگاه………………………………………………………………………………………….. فصل چهارم: روش انجام آزمایشها…………………………………………………………………………. 4 4-1- مواد استفاده شده …………………………………………………………………………………………………………. . 4-2- روش انجام
آزمایش……………………………………………………………………………………………………………. .. 4-3- آنالیز محصولات………………………………………………………………………………………………………………….. … 4-3-1- آنالیز میكروسكوپ الكترون روبشی ……………………………………………………………………………. … 4-3-2- نرم افزار image analysis3.2 (SIS)………………………………………………………………… . فصل پنجم: نتایج ……. 5-1- بحث و نتیجهگیری ………………………………………………………………………………………………………….. …. 5-2- اثر غلظت……………………………………………………………………………………………………………………………. …. 5-3- اثر فشار………………………………………………………………………………………………………………………………. …. 5-4- اثر دما…………………………………………………………………………………………………………………………………. ….. 5-5- اثر دبی دی اكسیدكربن……………………………………………………………………………………………………. ….. 5-6- نتیجهگیری………………………………………………………………………………………………………………………… …. منابع………………………………………………………………………………………………………………………………………………. ….
صفحه | عنوان |
10 | جدول شماره (1-1): دما و فشار بحرانی برای بعضی از حلال های فوق بحرانی……………….. ………… |
19 | جدول شماره (1-2): نمونههایی از مواد منفجره تولید شده بوسیله فرایند GAS ……………. ………… |
20 |
جدول شماره (1-3): نمونههایی از مواد معدنی، آلی و دارویی تولید شده بوسیله فرآیندهای فوق بحرانی …………………………………………………………………………………………………………………………………………………. |
58 | جدول شماره (5-1): فاكتورها و سطوح ورودی به نرم افزار تاگوچی……………………………………….. ……. |
59 | جدول شماره (5-2): فاكتورها و سطوح تعیین شده بوسیله نرم افزار تاگوچی…………………. ………… |
60 | جدول شماره (5-3) : فاكتورها و سطوح حاصله بوسیله نرم افزار تاگوچی………………………… …………. |
60 | جدول شماره (5-4) : اثر اصلی هر یك از پارامترها…………………………………………………………….. …………. |
61 | جدول شماره (5-5) : برهم كنش دوتایی پارامترها……………………………………………………………… …………. |
62 | جدول شماره (5-6) : فاكتور غلظت (mg/mL) در سطوح حاصله بوسیله نرم افزار تاگوچی ………….. |
64 | جدول شماره (5-7) : فاكتور فشار (Bar) در سطوح حاصله بوسیله نرم افزار تاگوچی…….. ………….. |
65 | جدول شماره (5-8) : فاكتور دما (C°) در سطوح حاصله بوسیله نرم افزار تاگوچی……….. ………….. |
66 |
جدول شماره (5-9) : فاكتور دبی دی اكسیدكربن (mg/min) در سطوح حاصله بوسیله نرم افزار ناگوچی ………………………………………………………………………………………………………………………………………………. |
صفحه | عنوان |
9 | شکل شماره (1-1): مقایسه خواص فیزیکی ـ شیمیایی مایعات، گازها و سیالات فوق بحرانی……………………………………………………………………………………………………………………………………………………. ………… |
14 | شکل شماره (1-2): نمایی از فرایند RESS………………………………………………………………………….. ………… |
15 |
شکل شماره (1-3): تصاویر SEM ذرات Griseofulvin و β_Sitosterol تولید شده بوسیله روش RESS………………………………………………………………………………………………………………………………………… ………… |
16 | شکل شماره (1-4): نمایی از فرآیندPGSS…………………………………………………………………………… ………… |
18 | شکل شماره (1-5): نمایی از فرآیند GAS/SAS…………………………………………………………………. …………. |
25 | شکل شماره (2-1): نمایی شماتیک نازل سه منفذ هم محور…………………………………………….. …………. |
37 |
شکل شماره (3-1): نمایی از دستگاه آزمایشگاهی استخراج با استفاده از دی اكسیدكربن فوق بحرانی………………………………………………………………………………………………………………………………………… …………. |
42 | شکل شماره (3-2): نمایی از کپ و واشرهای طراحی شده در دستگاه آزمایشگاهی………… ………… |
42 |
شکل شماره (3-3): نمایی از ظرف اصلی دوجداره حاوی محلول و محل ورودی و خروجی آب گرم به اطراف آن به همراه دماسنجهای مربوط……………………………………………………………… …………. |
43 | شکل شماره (3-4): نمایی از فیلتر فلزی شیرمانند………………………………………………………………. …………. |
44 | شکل شماره (3-5): ظرف مایع سازی گاز CO2، نمای بیرونی و بخش درون آن……………… ………….. |
45 | شکل شماره (3-6) : پمپ فشار بالا (Haskel Pump, Burbank, CA 91502)…………………. …………. |
46 |
شکل شماره (3-7): نمای سیستم مخازن آب گرم مورد استفاده همرا با پمپهای سیرکولاسیون برای لوله مارپیچ و ظروف استخراج…………………………………………………………………………………………. ………… |
47 |
شکل شماره (3-8): نمایی از تابلوی سیستم کنترلی و سیم کشیهای انجام شده برای این سیستم……………………………………………………………………………………………………………………………………… ………….. |
47 |
شکل شماره (3-9): نمایی از دماسنجهای استفاده شده ASTM و نمایی از ترموکوپل نوع 100-PT و K……………………………………………………………………………………………………………………………………… ………… |
48 | شکل شماره (3-10): نمایی از ظرف نوسانگیر در دستگاه فوق بحرانی……………………………. …………. |
49 | شکل شماره (3-11): نمایی از فشارسنج عقربهای و ترانسمیتر فشار…………………………………. ………… |
49 |
شکل شماره (3-12): نمایی از اتصالات، شیرآلات و لوله کشی استیل بکار رفته در دستگاه فوق بحرانی…………………………………………………………………………………………………………………………………………. ……….. |
50 |
شکل شماره (3-13): نمایی از اتصالات و تبدیل استفاده شده برای اتصال جریان گاز CO2 خروجی از کپسول به سیستم سرد کننده……………………………………………………………………………… ……….. |
52 | شکل شماره (4-1): نمایی از ذرات اولیه با سایز متوسط 3/62 میکرومتر…………………………. ……….. |
54 | شکل شماره (4-2): شماتیك دستگاه ضد حلال فوق بحرانی……………………………………………… ……….. |
55 | شکل شماره (4-3): نمایی از دستگاه میكروسكوپ الكترون روبشی…………………………………….. ………. |
55 | شکل شماره (4-4): نمایی از دستگاه پوشش دهنده پاششی………………………………………………. ……….. |
59 | شکل شماره (5-1): تصاویر ذرات حاصله بر طبق جدول تاگوچی……………………………………….. ……….. |
61 | شکل شماره (5-2): اثر اصلی هر یك از پارامترها در نمودار دایرهای………………………………….. ……….. |
61 | شکل شماره (5-3): اثر اصلی هر یك از پارامترها در نمودار میلهای…………………………………… ……….. |
62 | شکل شماره (5-4): برهم كنش دوتایی پارامترها در نمودار دایرهای………………………………….. ………… |
62 | شکل شماره (5-5): برهم كنش دوتایی پارامترها در نمودار میلهای……………………………………. ………. |
63 | شکل شماره (5-6): تغییرات قطر بر حسب سطوح غلظت……………………………………………………. ……… |
64 | شکل شماره (5-7): تغییرات قطر بر حسب سطوح فشار……………………………………………………… ………. |
65 | شکل شماره (5-8): تغییرات قطر بر حسب سطوح دما……………………………………………………….. ………… |
67 | شکل شماره (5-9): تغییرات قطر بر حسب سطوح دبی دی اكسیدكربن………………………………….…… |
– پیشگفتار
امروزه استفاده از فناوری سیالات فوق بحرانی جهت تولید محصول با اندازههای میکرو یا نانو، رشد افزونی یافته است. با توجه به برخی خواص گاز گونه و مایع گونه سیالات فوق بحرانی نظیر نفوذپذیری و دانسیته بالا امکان کاربرد فرآیندهای سیالات فوق بحرانی در تولید مواد مختلف در مقیاس میکرو یا نانو در صنایع مختلف فراهم شده است. از کاربردهای مهم اینگونه فرآیندها میتوان به تولید مواد مختلف نظیر داروها، پروتئینها بیوپلیمرها و همچنین مواد شیمیایی در مقیاس میکرو و یا نانو اشاره داشت.
فناوری استفاده از سیالات فوق بحرانی تمهیدات متعددی را جهت دستیابی به اهداف ذکر شده مهیا میسازد. می دانیم که دی اکسیدکربن یکی از پرکابردترین سیالات در فرآیندهای فوق بحرانی میباشد. دی اکسیدکربن دارای فشار بحرانی حدود 8/73 بار و دمای بحرانی 1/31 درجه سانتیگراد است. به علاوه دی اکسیدکربن، سیالی غیر سمی، غیر قابل احتراق، ارزان و دوستدار محیط زیست می باشد.
تا سال 1984 در هیچ مرجعی کاربرد سیال فوق بحرانی جهت تولید ریز ذرات ارائه نشده است، تا اینکه کروکونیس[1] و همکارانش نتایج خوبی جهت هسته زایی در سایر مواد ثبت نمودهاند از جمله مطالعات انجام شده میتوان به کاهش اندازه ذرات مواد دارویی و موادی که نسبت به فرآیندهای دما بالا حساسیت دارند، اشاره داشت.
یكی از روشهای مهم در تولید مواد در اندازههای میکرو- نانو روش ضد حلال فوق بحرانی با استفاده از یک حلال آلی میباشد. لازم به ذکر است در این روش جزء دلخواه داخل حلال آلی به صورت فوق اشباع حل شده و سپس در شرایط فوق بحرانی یا نزدیک بحرانی با سیالی نظیر دی اکسید کربن در تماس قرار میگیرد.
نکته مهم این است که دی اکسیدکربن به خوبی در اکثر حلالهای آلی حل میشود لذا با حل شدن دی اکسیدکربن در حلال آلی، حالت فوق اشباع برای جز حل شدنی پدید میآید و موجب تبلور جزء مورد نظر میگردد[1].

دانلود پایان نامه ارشد : مطالعه مدلهای انرژی تاریک در کیهان شناسی برنز دیکی
جمعه 99/10/26
:
تاریخچه كیهانشناسی به عنوان یك علم به سال 1915 بعد از پیدایش نسبیت عام باز میگردد. قبل از نسبیت عام توسط انیشتین نظریات مبهمی توسط فلاسفه و فیزیكدانان در مورد پیدایش و تحول كیهان ارائه شده بود اما به دلیل نداشتن پشتوانه محكم نظری و تجربی، سست و غیر مطمئن بود. در سال 1920 ادوین هابل انبساط عالم را كشف كرد. با این كشف به همراه كشف زمینه ریز موج كیهانی در سال1960 كیهانشناسی وارد مرحله مشاهدهای شد اما همچنان بر اصل كوپرنیكی، كه میگوید جهان هیچ مركزی ندارد، استوار است. بررسی دقیق افت و خیزهای كوانتومی در زمینه ریز موج كیهانی كه نخستین نشانه تشكیل ساختار در كیهان میباشد، امكان مطالعه دقیق
رشد ناهمگنیها و تشكیل ساختارهای اولیه را فراهم آورد. ارائه نظریه تورم در سال 1918 و تكمیل آن در سالهای بعد منشأ كوانتومی این افت و خیزها را تا حدی روشن ساخت. تعداد زیادی از مشاهدات كیهانشناسی شبیه[1] و[2] از انبساط شتابدار تندشونده جهان حكایت دارند. بررسی دقیقتر این دادههای كیهانی نشان داد كه برای رسیدن به یك تصویر سازگار از ساختارهای بزرگ كیهانی و نحوه تشكیل آنها لازم است كه مقادیر قابل توجهی ماده و انرژی به صورت تاریك در لابلای ستارگان و كهكشانها وجود داشته باشد به گونهای كه ماده مرئی تنها حدود 4 درصد از كل ماده و انرژی كیهان را به خود اختصاص میدهد! پس عامل این انبساط چیز دیگری است. مادهای با فشار منفی كه عامل ناشناخته این انبساط است. بنابراین كشف ماهیت ماده و انرژی تاریك یكی از بزرگترین تحولات فیزیك و كیهانشناسی خواهد بود كه ممكن است درك ما را از مكانیزمهای بنیادی طبیعت دچار تحول كند [1]. برای توجیح این مشكل نظریات زیادی در چند دهه اخیر ارائه شد. اولین مدل مطرح شده است كه در آن از ثابت كیهانشناسی به عنوان انرژی خلأ یاد شده است [2]. همچنین مدلهای دیگری نیز وجود دارند كه منطبق بر اصل هولوگرافیك هستند از قبیل مدل هولوگرافیك، ایج گرافیك و…
-1 اصول كیهانشناسی
برای بررسی کیهان اصولی را به نام اصل کیهانشناسی[1] فرض میکنند:
۱-جهان همگن[2] است.
۲-جهان همسانگرد[3] است.
3-هیچ نقطهای در جهان بر نقاط دیگر ارجح نیست.
بنا به شرایط اولیه و جزئیاتی که نظر گرفته میشود الگوهای متفاوتی برای سرآغاز و سرانجام کیهان پیشنهاد شده است. الگوی کیهانشناختی که امروزه مورد پذیرش اکثریت جامعه علمی است به مدل مهبانگ مشهور است. طبق این نظریه که مقبولترین نظریه در پیدایش جهان است، همه ماده و انرژی که هماکنون در جهان وجود دارد زمانی در گوی کوچک بینهایت سوزان ولی فوقالعاده چگال متمرکز بوده است. این آتشگوی کوچک حدود 15 میلیارد سال قبل منفجر شد و همه مواد در فضا پخش شدند. با گذشت زمان این گسترش و پراکندگی ادامه یافت. تراکم تودههایی از این مواد در نواحی مختلف باعث بوجود آمدن ستارگان و کهکشانها در فضا شد، ولی گسترش همچنان ادامه دارد.

دانلود پایان نامه ارشد : مطالعه نقش استیله شدن بر ساختار و ویژگی های آمیلوئیدی هورمون انسولین
جمعه 99/10/26
1-1- هورمون انسولین …………………………………………………………………………………………………………. 2
1-1- 1- ساختار هورمون انسولین ……………………………………………………………………………….. 4
1-1-1-1- ساختار اول انسولین……………………………………………………………………………….. 4
1-1-1-2- ساختار دوم انسولین………………………………………………………………………………. 5
1-1-1-3- ساختار سوم انسولین……………………………………………………………………………. 6
1-1-1-4- ساختار چهارم انسولین…………………………………………………………………………. 6
1-1-2- سنتز هورمون انسولین……………………………………………………………………………………… 8
1-1-3- ترشح هورمون انسولین…………………………………………………………………………………… 9
1-1-4- اشکال مختلف هورمون انسولین ……………………………………………………………………. 10
1-1-5- عملکرد زیستی هورمون انسولین ………………………………………………………………….. 11
1-1-6- گیرنده هورمون انسولین…………………………………………………………………………………. 13
1-2- بیماری دیابت قندی…………………………………………………………………………………………………… 15
1-2-1- دیابت نوع- I…………………………………………………………………………………………………….. 15
1-2-1-1- دیابت آدیوپاتیک……………………………………………………………………………………. 16
1-2-2- دیابت نوع- II…………………………………………………………………………………………………… 16
1-2-3- دیابت حاملگی………………………………………………………………………………………………….. 17
1-2-4- عوارض بیماری دیابت ……………………………………………………………………………………. 17
عنوان صفحه
1-3- آسپرین ………………………………………………………………………………………………………………………. 19
1-3-1- ساز و کار عملکرد آسپرین …………………………………………………………………………….. 21
1-4- تا خوردگی و تجمعات پروتئینی……………………………………………………………………………….. 22
1-4-1- تجمعات منظم پروتئینی: فیبر آمیلوئیدی…………………………………………………….. 25
1-4-2- مراحل تشکیل فیبریل ها……………………………………………………………………………….. 26
1-4-3- پدیده فیبریلاسیون هورمون انسولین…………………………………………………………….. 28
1-5- نقش چاپرون ها در جلوگیری از فرآیند توده ای شدن
و فیبریلاسیون پروتئین ها……………………………………………………………………………………………………. 32
1-5-1- چاپرون های آلفا کریستالین و بتا کازئین……………………………………………………… 32
فصل دوم: مروری بر پژوهش های پیشین…………………………………………………………………………. 35
فصل سوم: مواد و روش های تحقیق
3-1- مواد مصرفی و رده ی سلولی…………………………………………………………………………………….. 40
3-1-1- مواد مصرفی……………………………………………………………………………………………………… 40
3-1-2- رده ی سلولی…………………………………………………………………………………………………… 41
3-2- تهیه محلول ها……………………………………………………………………………………………………………. 41
3-2-1- تهیه محلول های مورد نیاز کشت سلول سرطانی…………………………………………. 41
3-2-1-1- تهیه محلول MTT………………………………………………………………………………… 41
3-2-1-2- تهیه محلول تریپان بلو جهت رنگ آمیزی و شمارش
سلول های زنده و غیر زنده……………………………………………………………………………………… 41
3-2-1-3- تهیه محلول SDS-DMF……………………………………………………………………… 42
3-2-2- تهیه ی محلول های پروتئینی………………………………………………………………………… 42
عنوان صفحه
3-2-2-1- تهیه ی محلول انسولین ………………………………………………………………………. 42
3-2-2-2- تهیه محلول های بتاکازئین و آلفاکریستالین………………………………………. 43
3-2-3- تهیه ی محلول های مورد نیاز………………………………………………………………………. 43
3-2-3- 1- تهیه محلول بافر فسفات…………………………………………………………………….. 43
3-2-3-2- تهیه ی محلول استوک ANS……………………………………………………………… 44
3-2-3-3- تهیه ی محلول استوک تیوفلاوین T ………………………………………………… 45
3-2-3-4- تهیه محلول استوک کنگورد………………………………………………………………… 46
3-2-3-5- تهیه محلول OPA………………………………………………………………………………. 47
3-2-3-6- تهیه محلول فلورسامین………………………………………………………………………. 48
3-2-4- تهیه محلول های مورد نیاز ژل الکتروفورز …………………………………………………… 48
3-2-4-1- تهیه محلول آکریل آمید و بیس آکریل آمید……………………………………… 48
3-2-4-2- تهیه محلول 20 درصد SDS…………………………………………………………….. 48
3-2-4-3- تهیه محلول 10 درصد آمونیوم پرسولفات (APS) …………………………. 49
3-2-4-4- تهیه محلول بافر تریس 5/1 مولار ……………………………………………………… 49
3-2-4-5- تهیه محلول بافر تریس 5/0 مولار ……………………………………………………. 49
3-2-4-6- تهیه محلول بافر تانک…………………………………………………………………………. 50
3-2-4-7- تهیه بافر نمونه X2 ……………………………………………………………………………. 50
3-2-4-8- تهیه محلول رنگ آمیزی کوماسی بلو………………………………………………… 51
3-2-4-9- تهیه محلول رنگ زدای کوماسی بلو……………………………………………………. 51
3-3- روش های استفاده شده در این پژوهش………………………………………………………………….. 52
3-3-1- تخلیص آلفا کریستالین ………………………………………………………………………………… 52
3-4- روش های تحقیق………………………………………………………………………………………………………. 53
3-4-1- فرآیند استیلاسیون هورمون انسولین پانکراس گاوی با آسپیرین……………….. 53
عنوان صفحه
3-4-2- الکتروفورز ژلی هورمون انسولین استیله و غیر استیله
به منظور بررسی میزان استیلاسیون و تشکیل توده های پروتئینی
با وزن مولکولی بالا………………………………………………………………………………………………………….. 53
3-4-3- تعیین گروه های آمین آزاد/ غیر واکنش دهنده در هورمون انسولین……….. 54
3-4-4- مطالعه فلورسانس ذاتی هورمون انسولین در حضور آسپیرین…………………….. 55
3-4-5- مطالعه فلورسانس عارضی هورمون انسولین در حضور آسپیرین………………… 56
3-4-6- بررسی تشکیل فیبر آمیلوئیدی هورمون انسولین در حضور
آسپیرین با استفاده از آزمون فلورسانس تیوفلاوین T (ThT) و آزمون
اسپکتروسکوپی سنجش جذبی کنگورد……………………………………………………………………….. 57
3-4-7- بررسی توده ای شدن پروتئین انسولین استیله و غیر استیله ……………………. 58
3-4-8- مطالعه اثر استرس های شیمیایی و فیزیکی در القاء تشکیل
فیبر آمیلوئیدی انسولین استیله و غیر استیله…………………………………………………………….. 58
3-4-9- مطالعه جلوگیری از توده ای شدن هورمون انسولین استیله
و غیر استیله با چاپرون های بتا کازئین و آلفا کریستالین……………………………………………. 59
3-4-10- مطالعه ساختار دوم انسولین به روش دو رنگ نمای دورانی
در حضور آسپیرین ………………………………………………………………………………………………………… 59
3-4-11- مطالعه هورمون انسولین به روش دستگاه پراکندگی
پویای نور در حضورآسپیرین……………………………………………………………………………………………. 61
3-4-12- مطالعه تغییرات کشش سطحی نمونه های
انسولین استیله و غیر استیله………………………………………………………………………………………… 62
3-4-13- مشاهده ی فیبر آمیلوئیدی پروتئین با دستگاه
میکروسکوپ فلورسانس…………………………………………………………………………………………………… 63
3-4-14- بررسی فعالیت القا مرگ سلولی انسولین استیله با سنجش MTT …………. 63
3-4-15- آزمون آماری………………………………………………………………………………………………….. 65
عنوان صفحه
فصل چهارم: نتایج و بحث
4-1- مطالعه استیلاسیون پروتئین انسولین پانکراس گاوی در حضور آسپیرین……………. 67
4-2- مطالعه بررسی استیلاسیون پروتئین انسولین…………………………………………………………. 67
4-3- بررسی پیدایش گونه های مولکولی با وزن بالای انسولین در حضور آسپیرین
با الکتروفورز ژلی……………………………………………………………………………………………………………………. 70
4-4- مطالعه پیدایش گونه های مولکولی مختلف انسولین در حضور آسپیرین
با روش پراکنش پویای نور…………………………………………………………………………………………………… 73
4-5- مطالعه ساختار دوم پروتئین انسولین استیله به روش دو رنگ نمای دورانی……….. 75
4-6- مطالعه ساختار سوم انسولین استیله با روش فلورسانس ذاتی و محیطی…………….. 78
4-7- مطالعه کشش سطحی انسولین نمونه های مختلف انسولینی……………………………….. 80
4-8- بررسی توده ای شدن پروتئین انسولین بعد از فرآیند استیلاسیون…………………….. 82
4-9- بررسی تشکیل فیبر آمیلوئیدی پروتئین انسولین در حضور آسپیرین
با روش های اسپکتروسکوپی………………………………………………………………………………………………. 84
4-10- مطالعه ی میکروسکوپی تشکیل فیبر آمیلوئیدی به وسیله ی پروتئین
انسولین در حضور آسپیرین………………………………………………………………………………………………… 87
4-11- مطالعه ی اثر استرس های شیمیایی و فیزیکی بر ساختار و ویژگی های
آمیلوئیدی انسولین استیله و غیر استیله…………………………………………………………………………….. 88
4-12- مطالعه کینتیک توده ای شدن نمونه های مختلف انسولینی……………………………. 93
4-13- جلوگیری از فرآیند توده ای شدن نمونه های مختلف انسولینی
به کمک دو چاپرون مولکولی آلفا کریستالین و بتا کازئین……………………………………………….. 94
4-14- مطالعه ی سمیت توده های پروتئینی انسولین استیله……………………………………….. 97
نتیجه گیری ……………………………………………………………………………………………………………………………… 99
فهرست منابع و مآخذ 101
فهرست جداول
عنوان صفحه
جدول3-1- مقادیر لازم برای تهیه ی 1 لیتر بافر فسفات………………………………………………………. 43
جدول3-2- مقادیر لازم برای تهیه ی 1 لیتر بافر تانک………………………………………………………….. 50
جدول 3-3- مقادیر مورد نیاز جهت تهیه ی 25 میلی لیتر بافر نمونه…………………………………. 51
جدول 4-1- تغییرات شعاع هیدرودینامیک پروتئین انسولین در حضور آسپیرین……………… 75
جدول 4-2- محتوای ساختارهای دوم نمونه های مختلف انسولین بر حسب درصد…………… 77
فهرست شکل ها
عنوان صفحه
شکل 1-1- توالی اسید آمینهی پروتئین انسولین انسانی……………………………………………………….. 4
شکل 1-2- ساختار سوم و چهارم انسولین……………………………………………………………………………….. 7
شکل1-3- نمایی از مراحل سنتز هورمون انسولین………………………………………………………………….. 9
شکل 1-4- نمایی شماتیک از سلول بتای پانکراس
و چگونگی ترشح انسولین از این سلول…………………………………………………………………………………….. 10
شکل1-5- مدل ساختاری گیرنده انسولین……………………………………………………………………………… 14
شکل1-6- نمایی از ساختار مولکولی داروی آسپیرین……………………………………………………………. 20
شکل1-7- نمایی از مراحل تاخوردگی پروتئین………………………………………………………………………. 23
شکل1-8- نمایی از ایجاد حالات مولکولی گوناگون در مسیر تاخوردگی پروتئین……………….. 25
شکل1-9- تصویر شماتیک الگوی پراش اشعه X ساختار های بتا در فیبرهای آمیلوئید….. 26
شکل1-10- کینتیک تشکیل فیبر آمیلوئیدی………………………………………………………………………… 27
شکل 1-11- نمایی از ساز و کار فیبریلاسیون هورمون انسولین………………………………………….. 28
شکل1-12- مدل سلسله مراتبی تجمع انسولین در تشکیل فیبر آمیلوئید………………………….. 31
شکل 3-1- نمایی از طیف جذبی انسولین………………………………………………………………………………. 43
شکل3-2- نمایی از طیف جذبی ANS………………………………………………………………………………….. 44
شکل3-3- نمایی از طیف جذبی تیو فلاوین-T………………………………………………………………………. 45
شکل 3-4- نمایی از طیف جذبی کنگورد……………………………………………………………………………….. 46
شکل3-5- نمایی از ساختار ترکیبOPA………………………………………………………………………………. 47
عنوان صفحه
شکل3-6- نمایی از ساختار شیمیایی ترکیب فلورسامین………………………………………………………. 48
شکل 3-7- دستگاه فلورسانس Cary-Eclips………………………………………………………………………….. 57
شکل 3-8- نمایی از دستگاه دورنگ نمای دورانی215 Aviv……………………………………………… 60
شکل 3-9- نمایی از دستگاه DLS………………………………………………………………………………………….. 61
شکل3-10- دستگاه کشش سنج Kruss K100…………………………………………………………………….. 62
شکل3-11- نمایی از دستگاه میکروسکوپ فلورسانس Olympus-CX31…………………………… 63
شکل 3-12- نمایی از خانه های پلیت کشت سلولی……………………………………………………………… 64
شکل 3-13- تبدیل MTTبه فورمازان در یک واکنش کاهشی
در میتوکندری سلول های زنده…………………………………………………………………………………………………. 65
شکل 4-1- نتایج حاصل از مطالعه ی استیلاسیون پروتئین انسولین
با استفاده از آزمون های جذبیOPA و نشری فلورسامین………………………………………………………. 69
شکل 4-2- نمایی از الکتروفورز طبیعی و غیر طبیعی (احیایی و غیر احیایی )
نمونه های مختلف هورمون انسولین………………………………………………………………………………………….. 71
شکل 4-3- نمایی از الکتروفورز طبیعی و غیر طبیعی (احیایی و غیر احیایی )
نمونه های مختلف هورمون انسولین………………………………………………………………………………………… 72
شکل 4-4- مطالعه ی DLS نمونه های متفاوت انسولین……………………………………………………… 74
شکل 4-5- طیف دو رنگ نمای دورانی محدوده فرابنفش دور نمونه های
انسولین استیله شده در مدت زمان 20 روز و 36 روز………………………………………………………… 76
شکل 4-6- طیف نشری فلورسانس ذاتی نمونه های مختلف انسولین………………………………….. 79
شکل 4-7- طیف نشری فلورسانس عارضی نمونه های مختلف انسولین……………………………… 80
شکل 4-8- مطالعه ی تغییرات کشش سطحی نمونه های متفاوت انسولین
طی انکوباسیون در مدت زمان 20 و 36 روز…………………………………………………………………………… 82
شکل 4-9- مطالعه ی توده ای شدن انسولین در حضور آسپیری………………………………………… 83
عنوان صفحه
شکل 4-10- مطالعه ی فلورسانس تیوفلاوین T نمونه های انکوبه شده
20 روز و 36 روز انسولین در حضور آسپیرین………………………………………………………………………. 85
شکل 4-11- مطالعه ی اتصال کنگورد به نمونه های مختلف انسولینی………………………………. 86
شکل 4-12- تصویر فیبر آمیلوئیدی پروتئین انسولین مشاهده شده
با فلورسانس تیوفلاوین T………………………………………………………………………………………………………….. 88
شکل 4-13- مطالعه ی نشر فلورسانس ذاتی نمونه های متفاوت انسولین
در حضور استرس شیمیایی و فیزیکی…………………………………………………………………………………….. 90
شکل4-14- مطالعه ی نشر فلورسانس عارضی نمونه های متفاوت انسولین
در حضوراسترس شیمیایی و فیزیکی………………………………………………………………………………………. 91
شکل 4-15- مطالعه ی فلورسانس تیوفلاوین T نمونه های متفاوت انسولین
در حضور استرس شیمیایی و فیزیکی…………………………………………………………………………………….. 92
شکل 4-16- مطالعه ی کنیتیک توده ای شدن نمونه های مختلف انسولینی……………………. 94
شکل 4-17- مطالعه جلوگیری از فرآیند توده ای شدن نمونه های مختلف
انسولین با استفاده از چاپرون های بتا کازئین و آلفا کریستالین……………………………………………. 96
شکل 4-18- نتایج حاصل از آزمون MTT پس از 24 ساعت انکوبه کردن
رده سلول سرطانی Jurkat با فیبر نمونه های انسولینی استیله وغیراستیله………………………… 98
علائم اختصاری
BPI: Bovine Pancreatic Insulin.
OPA: o-Phthalaldehyde.
ANS: 1-anilino-8-naphthalene sulfonate.
CD: Circular dichroism.
CDNN: Context dependent neural networks.
DLS: Dynamic light scattering.
DMF: Dimethylformamide.
DMSO: Dimethyl Sulfoxide.
DTT: Dithiothreitol.
MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
RH: Hydrodynamic radius.
RPMI: Rapid Prototyping & Manufacturing Institute.
SDS: Sodium dodecyl sulfate.
ThT: Thioflavin T.
هورمون انسولین
مسیر پیچیده کشف انسولین که با یک مشاهده اتفاقی شروع شد، بیانگر موهبتی بزرگ و آزمایش های دقیق است که به وسیله آن بسیاری از هورمونها کشف شدند. نقطه آغاز ماجرا اصلا ارتباطی با انسولین نداشت. در سال 1989 اسکار مینکوفسکی[1] به همراه ژوزف فون مرینگ[2] به بررسی دخالت پانکراس سگ در هضم چربی پرداختند. قبل از انجام آزمایش های مربوط به هضم چربی، مینکوفسکی مشاهده کرد که میزان ادرار سگ به طور قابل توجهی افزایش پیدا کرده است و همچنین مقادیر بالایی از گلوکز در ادرار مشاهده می شود. آنها با این مشاهده به نقش کمبود عاملی از پانکراس در ایجاد دیابت پی بردند. مینکوفسکی تلاش های زیادی در تهیه عصاره ای از پانکراس کرد تا بتواند اثر دیابت را معکوس نماید ولی هیچ وقت به چنین موفقیتی دست نیافت. امروزه با پیشرفت علم مشخص شده که ماهیت پروتئینی انسولین از یک سو و تولید پروتئازها در پانکراس از سویی دیگر، از طریق تجزیه این هورمون به وسیله این آنزیم ها عامل این شکست بوده است.
تلاش های بی ثمر زیادی در این راستا انجام شد که تا تابستان 1921 نتیجه ای در بر نداشت. در این سال دانشمندی به نام فریدریک بنتینگ[3] با همکاری چارلز بست[4] در آزمایشگاه مک لود[5] این موضوع را بررسی کردند. از این به بعد بود که سلول های جزایر لانگرهانس به عنوان محل اختصاصی تولید عامل ضد دیابت مشخص شد. بر همین اساس نام انسولین به دلیل اینکه در جزایر لانگرهانس تولید می شود بر روی عامل ضد دیابت گذاشته شد. بنتینگ و بست به همراه بیوشیمی دانی به نام کولیپ[6] موفق به تهیه عصاره ی خالصی از پانکراس شدند که سبب بهبود علایم ناشی از دیابت در سگ شد. یک سال بعد با تزریق فرآورده انسولین به پسر بچه 14 ساله ای به نام لئونارد تامپسون که مبتلا به دیابت قندی شدید بود، جان وی نجات یافت. در سال 1923 جایزه نوبل برای این کشف به بنتینگ و مک لود اهدا شد. تا سال های مدید برای تولید انسولین از پانکراس خوک استفاده می شد تا اینکه در دهه 1980 و با پیشرفت مهندسی ژنتیک از ژن های کلون شده انسانی در میکرو ارگانیسم ها برای این منظور استفاده شد.
انسولین هورمونی است که برای تنظیم ذخیره ی انرژی و سوخت و ساز گلوکز در بدن ضروری است و درون بافت های کبدی، ماهیچه ای و چربی به عنوان یک عامل محرک برای دریافت گلوکز از خون و ذخیره ی آن به صورت گلیکوژن عمل می نماید.
انسولین یکی از کوچکترین پروتئین هایی است که دارای ساختار های متنوع پروتئینی شامل مارپیچ آلفا[7]، صفحات بتا[8]، چرخش بتا[9]، خودتجمعی[10] و فیبرهای آمیلوئیدی[11] است (Hua و همکاران 2004، Dobson 1999 ).
1-1- 1- ساختار هورمون انسولین
1-1-1-1- ساختار اول انسولین
انسولین که اولین هورمون پپتیدی کشف شده می باشد دارای 51 اسید آمینه در دو زنجیره ی پلی پپتیدیA و B است. ساختار طبیعی این هورمون به وسیله سه پلی دی سولفیدی پایدار می شود. در این پروتئین یک پیوند دی سولفیدی درون زنجیره ای بین اسید آمینه ی سیستئین 6 و 11 زنجیره ی A ، دو پیوند دی سولفیدی بین زنجیره ای میان اسید آمینه های سیستئین موقعیت 7 زنجیره A و موقعیت 7 زنجیره ی B، همچنین سیستئین جایگاه 20 از زنجیره A و سیستئین جایگاه 19 زنجیره ی B تشکیل می شود. (Nielsen و همکاران 2001)
شکل 1-1- توالی اسید آمینهی پروتئین انسولین انسانی.
ساختار اول انسولین در بین گونه های انسانی وحیوانی به صورت حفاظت شده است. جایگاه پیوند های دی سولفیدی و تعداد اسید های آمینه در هر زنجیره در اغلب گونه ها ثابت است. در بین گونه های مختلف، انسولین های انسانی، گاوی و خوکی دارای بیشترین شباهت هستند. درمقایسه با انسولین انسانی در گونه ی خوکی درموقعیت 30 زنجیره B اسید آمینه آلانین جایگزین اسید آمینه ترئونین شده است و در انسولین گاوی علاوه بر این تغییر در موقعیت A8 آلانین جانشین ترئونین و در موقعیت A10 والین جایگزین ایزولوسین گردیده است. این تغییرات تاثیری بر روی فعالیت زیستی این هورمون ندارد. دیگر اسید های آمینه که بدون تغییر در بین گونه ها باقی مانده اند مسئول شکل گیری ساختار مولکول بوده و به تا خوردگی صحیح مولکول انسولین کمک می کنند. به عنوان مثل باقی مانده های اسید آمینه ی سیستئین، اسید آمینه های غیر قطبی که هسته آبگریز پروتئین را تشکیل می دهند و سایر باقی مانده های اسید آمینه ای که در تا خوردگی صحیح ساختار سوم این پروتئین نقش ایفا می کنند در پدیده های فوق الذکر اهمیت دارند (Brange و همکاران 1993).

پایان نامه : مطالعه و بررسی تطبیقی روشهای عبور عابرین پیاده شهر تهران از عرض معابر و ارائه مطمئن ترین الگو سالهای 1387 و 1388
جمعه 99/10/26
بخش عمدهای از سفرهای شهری بصورت پیاده انجام میشود و هر سفر شهری سواره نیز حداقل در دو انتهای خود با سفرهای پیاده تكمیل میگردد. طبق برآوردهای انجام شده در شهر تهران حدود 25 درصد از كل سطح شبكه معابر شهری اختصاص به شبكه پیادهروی دارد. سایر تسهیلات پیادهروی هم نسبت قابل توجهی در كل سیستم حمل و نقل شهری به خود اختصاص میدهند. [1]
سیستم پیاده در مقایسه با سایر سیستمهای حمل و نقل شهری دارای خصوصیات و مزایای منحصر به فردی است كه از جمله آنها میتوان به انعطافپذیری، ارزانی، مصرف انرژی كمتر، هماهنگی با ملاحظات زیستمحیطی و … اشاره نمود. علاوه بر این سیستم پیادهروی نقش مكمل در ارائه خدمات سایر سیستمهای جابجایی و بخصوص حمل ونقل عمومی را ایفا میكند. از سوی دیگر برخلاف سایر سیستمهای ترابری كه تقاضای سفر آنها وابسته به سایر فعالیتها است در این سیستم سفر پیاده میتواند هم وسیله باشد و هم هدف. به عبارت دیگر پیادهروی ممكن است صرفاً به خاطر خود پیادهروی انجام شود. علاوه بر سفرهای پیاده كامل كه به منظور معین از مبدأ تا مقصد انجام
میگیرد بخشی از سفرهای سواره نیز معمولاً به شكل پاره سفر نظیر فاصله دو ایستگاه اتوبوس، فاصله محل پاركینگ تا مقصد و … به صورت پیاده عمل میشود كه اینگونه سفرهای پیاده نیز حجم قابل ملاحظهای در مجموع سفرهای شهری را به خود اختصاص میدهد.
باید توجه داشت در شكلگیری شهرهای اولیه، پیاده نقش اصلی را ایفا مینمود زیرا مسافت پیادهروی مطلوب، محل استقرار كاربریها و نهایتاً ساختار كلی شهر را مشخص میساخت. استقرار محل كسب و كار ، محل عبادت روزانه و مناطق مسكونی در طرحریزی شهرهای قدیمی بخوبی نمایانگر نقش و هویت پیاده كمرنگ گرددی و اتومبیل نقش اصلی را در تعیین محل استقرار كاربریها و شكلگیری شبكه ارتباطی پیدا نمود. تضاد انسان و اتومبیل در شكلگیری شبكه ارتباطی شهرها عموماً به نفع اتومبیل و كمرنگتر شدن هویت پیاده بوده است به طوریكه امروز در برنامهریزی شهری و حتی برنامهریزی حمل و نقل شهری پیاده جایگاه نسبی خود را نیز از دست داده است و سفرهای سواره انسان در كانون توجه مدیران و كارشناسان قرار گرفته و نهایتاً تخصیص امكانات و اعتبارات عمدتاً در جهت ایجاد تسهیلات برای عبور بیشتر وسایل نقلیه است. نتایج نظرخواهی از مدیران مناطق شهر تهران و برخی از شهرستانها كه توسط سازمان حمل و نقل و ترافیك شهر تهران صورت گرفته است و در مجلدی به همان نام چاپ و انتشار یافته است[9]،به وضوح نشان میدهد كه عابر پیاده در سازمان شهرداریها و تخصیص اعتبارات جاری آنها جایگاه متناسبی ندارد و عملاً در طرحهای توسعه شبكه ارتباطی شهری احداث سوارهرو و تأمین تسهیلات برای عبور انسان سواره مورد توجه بوده است و عملاً احداث پیادهرو متناسب با حجم عبور پیاده و تأمین ایمنی آنها در عرض معابر بویژه در تقاطعها و پیشبینی محل ایمن برای محل انتظار مسافران درایستگاهها و … كمتر در طرحهای شهری مورد توجه قرار میگیرد.در كشورهای صنعتی پیشرفته كه خود سازنده اتومبیل هستند و مالكیت وسایل نقلیه به مراتب از شهرهای ما بالاتر است به مسائل پیاده توجه بیشتری مبذول شده است.
1-3- بیان مسئله
علیرغم مزایای غیرقابل انكار و مسلم سیستم پیاده هنوز موجودیت آن در كنار سایر سیستمها در كلان شهرهای كشورمان به درستی به رسمیت شناخته نشده است. شاید دلیل اصلی این كمتوجهی محدودیتهای پیادهروی از نظر سرعت و مسافت باشد و شاید گستردگی دامنه و فراگیری آن. در هر صورت به هیچ عنوان و دلیلی نادیده انگاشتن این سیستم قابل توجیه نبوده و یقیناً ادامه این روند نه به سود جامعه و نه در جهت بهبود سیستم حمل و نقل خواهد بود. بدیهی است وضعیت فعلی سیستم پیادهروی كه حاصل سالها بیبرنامگی و بیتوجهی نسبت به مسائل سیستم پیادهاز طرف مسئولین، برنامهریزان و طراحان میباشد را نمیتوان جز از طریق یك برنامهریزی جامع و هماهنگ بهبود بخشید. این برنامه باید لزوماً كلیه جنبههای مرتبط با برنامهریزی، طراحی و مدیریت سیستم را دربرگیرد و یكی از مهمترین اقدامات زیربنایی در این راستا تدوین اصول و معیارهای فنی مربوطه و ارائه پیشنهادات كاربردی است.
كمبود امكانات و تسهیلات تخصیص یافته به سیستم پیادهروی كه به هیچ روی تناسبی با جایگاه و سهم آن در حمل و نقل شهری ندارد و پائین بودن سطح عمومی آموزش و آگاهیهای ترافیكی باعث شده پیاده حقوق حقه خویش را پایمال یافته و گاهی خود نیز به عنوان متخلف در صحنههای مختلف ترافیكی ظاهر میشود لذا در برنامهریزی شهری و برنامهریزی حمل و نقل شهری ضروری است امكانات پیادهروی در معابر شهری مورد توجه خاص قرار گیرد و اینچنین است كه مطالعه و بررسی تطبیق روشهای عبور عابرین پیاده شهر تهران از عرض معابر تعریف و نیاز به توصیف آن ضرورت میابد.

دانلود پایان نامه ارشد : واژهنامه نجومی و تنجیمی بندهشن
جمعه 99/10/26
) به دلیل اینکه مؤلف، کتاب را با عبارت «هان! زندآگاهی …» و تعریف این واژه آغاز کرده است، عنوان اصلی آن پیش از دخالت کاتبان را «زندآگاهی» محسوب کرده اند. این نظریه درست به نظر میرسد چرا که متن کتاب حاوی اطلاعاتی است که دانستن آن از ملزومات فهم و درک مطالب اوستا میباشد. با این وجود، بهار معتقد است «بکار گرفتن این اصطلاح در آغاز سخن میتواند اشاره به منبع اصلی کتاب باشد نه نام آن» (1378: 6).
بندهشن کتابی است که کلیه موضوعات مورد توجه دوران باستان از قبیل هستی شناسی، فرجام شناسی، مذهب، تاریخ، جغرافیا، جانورشناسی، گیاه شناسی و … را مورد بحث قرار میدهد. از جمله موضوعاتی که در این کتاب مورد بررسی قرار گرفته است و دانستن آن برای درک بهتر برخی بخش های اوستا لازم است مطالب نجومی و تنجیمی است. اگر چه امروزه بین نجوم (که یک علم کاملاً فیزیکی است) و تنجیم (که استفاده از این علم در جهت درک امور متافیزیکی است) تفاوت بسیاری وجود دارد؛ این دو موضوع در دنیای باستان چنان با هم درآمیخته بوده اند که واژه نجوم به تنهایی بجای هر دو واژه به کار میرفته است و شاید بتوان گفت که ستاره شناسی یا نجوم تنها به مثابۀ
ابزاری بوده است برای تنجیم یا علم احکام نجوم که وظیفه اش پیش بینی آینده و توجیه حوادث گذشته بوده است.
منجمین باستان، آسمان پر ستاره را همچون کتابی میدیده اند که در آن جواب تمام سؤال های بی جواب آفرینش به صورت رمزگون نوشته شده است. آسمان جایگاه و موطن خدایان محسوب میشده و خدایان سرنوشت انسان را رقم میزدهاند. از این رو شناخت ساکنان آسمان و قلمرو آنان، یعنی اجرام آسمانی و نقشه آسمان، برای فهم ماوراءالطبیعه و مسایل مذهبی امری ضروری محسوب میشده است. در نتیجۀ همین طرز تفکر است که میبینیم، به طور مستقیم و غیر مستقیم، اجرام آسمانی و پدیده های نجومی در جای جای کتب مذهبی باستانی دیده میشوند. بنابراین، برای محققین امروزی، درک صحیح از واژگان نجومی و معادل های امروزی آنها اهمیت ویژه ای پیدا میکند.
مؤلف بندهشن در برخی فرگردها، از جمله فرگرد دوم درباره آفرینش صور فلکی، فرگرد بیستوپنجم درباره سال دینی، و خصوصاً فرگرد پنج-الف و پنج-ب درباره زیج گیهان (یعنی طالع عالم و وضعیت اجرام آسمانی به هنگام آفرینش جهان)، به طور مستقیم به ذکر اصطلاحات نجومی-تنجیمی و اهمیت آنها میپردازد. در سایر بخش ها، اطلاعات نجومی یا بطور گذرا عنوان شده و یا به طور غیرمستقیم مورد استفاده قرار گرفته است. با توجه به این که گاهشماری نیز یکی از علوم ناشی از نجوم و تنجیم محسوب میشود، این کتاب شامل بیشترین واژگان نجومی در پهلوی است.
این نکته که زبان بندهشن فارسی میانه است باعث شده تا مجموعه واژگان نجومی این کتاب بتواند به عنوان پلی بین معادل های اوستایی واژگان نجومی و معادل های فارسی نو آن عمل کند. اما از آنجا که حجم عظیمی از کتب اوستایی در گذر زمان از بین رفته است نمیتوان برای تمام واژگان نجومی معادل های اوستایی آنها را ذکر کرد.
تنجیم یا بکارگیری اصطلاحات نجومی در بیان مسایل غیرنجومی همچون داستان آفرینش و رخدادهای اساطیری از موارد چشمگیر بندهشن است. مثلاً تقسیم بندی دایره البروج به دوازده برج فلکی که هر یک 30 درجه است، یک مسئله نجومی است اما کاربرد آن در تقسیم بندی پیمانه 14700 ساله آفرینش نمایانگر کاربرد و معنای تنجیمی این بروج فلکی است.
در بندهشن پس از آن که زمان درنگْ خدای یا کرانه مند بوجود میآید، ظرف زمان به مدت 14700 سال یا 12 هزاره تعیین میشود که هر یک از این هزاره ها به نام یکی از اختران یا بروج فلکی نام گذاری میشوند. در سه هزاره اول، یعنی هزاره بره، گاو و دوپیکر، اهورامزدا به آفرینش موجودات اهورایی میپردازد و اهریمن با دیدن این موجودات نیک سرشت از حسادت دست به خلق موجودات اهریمنی میزند. در این سه هزارۀ اول، موجودات در حالت مینوئی اند یعنی «بی اندیشه، بی حرکت و ناملموس» (بهار، 1378: 34). با فرا رسیدن هزاره چهارم، یعنی هزاره خرچنگ، اهریمن آهنگ جنگ میکند و هرمزد پس از آنکه نمی تواند اهریمن را به صلح قانع سازد، از روی آینده بینی برای کارزار زمانِ پایان تعیین میکند و دوران آمیختگی به مدت 9000 سال تعیین میشود. اما پس از بستن این پیمان، هرمزد پایان کار را با خواندن دعای اَشِم وُهوو به اهریمن مینمایاند و اهریمن تا 3000 سال به گیجی فرو میرود که شامل هزاره های خرچنگ، شیر و خوشه است. از اینروست که با فرا رسیدن هزاره ترازو و برخاستن اهریمن از گیجی، دوران آمیختگی آغاز میشود و این گونه است که در هزاره های ترازو، کژدم، نیمسب، بز، دلو و ماهی، اهریمن به پیکار با آفریده های هرمزد ادامه میدهد تا با پایان هزاره ماهی پیمانه به آخر میرسد و زمان کرانهمند در سرآغاز هزارۀ بره از حرکت میایستد و اهریمن را در تاریکی ابدی بی نیرو رها میکند و بدین گونه، چرخش گیتی – به کمک ابزار زمان – با پیروزی هرمزد پایان میپذیرد.
در دوران آمیختگی جنگ اهورا و اهریمن به صورت تضادهای موجود در گیتی نمود مییابد و جنگ پدیده های سماوی و نجومی نیز از نمودهای همین جدال عمیق است. از اینروست که اختران (یعنی ثوابت = ستارگان) با اباختران (متحیرات = سیارات) به ستیز میپردازند و تمام تلاش خود را بکار میگیرند تا آسمان و گیتی را از شر پلیدی های اهریمنی بر حذر دارند. نقش اجرام آسمانی و ارتباط آنها با یکدیگر در تعیین سرنوشت گیتی و موجودات درون آن در قالب اصطلاحاتی تنجیمی همچون کده (= بیت)، بالِست (= شرف)، نِشیب (= هبوط)، و پِتیارگ (= وبال) از جمله مسایل مطروحه در بندهشن است.
هدف از تحریر کتاب بندهش به طور واضح شناسایی و معرفی اجزای آفرینش بوده است و از اینرو مکان آفرینش یعنی گیتی و در نتیجه نقشه گیتی اهمیت مییابد. نقشه گیتی شامل دو قلمرو است: یکی قلمرو آسمان که به علم نجوم مربوط میشود و قلمرو زمین که به علم جغرافیا ارتباط دارد. بنابراین طبقات آسمان و پدیده های نجومی و عملکرد آنها در صحنه گیتی بخش مهمی از این کتاب را در بر میگیرد.
کلیدی بودن نقش بندهشن از لحاظ گستردگی واژگانی در مجموعه کتب پهلوی و طبیعتِ دایرةالمعارف-گون آن موجب شده است تا کلیه کتب پهلوی دیگر به نوعی به آن مربوط شوند. از طرف دیگر، تشریح زمان آفرینشِ گیتی و موقعیتِ پدیده های نجومی در آن هنگامْ (= طالع عالم)، در کتاب بندهش، ایجاب میکند تا مؤلف بندهشن بیشترین اصطلاحات و واژگان نجومی را بکار گیرد و در نتیجه بندهشن به غنی ترین کتاب پهلوی در رابطه با نجوم بدل شود. از اینرو واژگان نجومی بندهشن و شناخت دقیق آنها، در درک مطالب نجومیِ سایرِ متون زردشتی، به یک امر کاملاً کلیدی و تعیین کننده بدل میشود و این اهمیت تنها به متون پهلوی محدود نمیباشد چرا که بندهشن مهمترین کتاب نجومی در ادبیات ایرانِ پیش از اسلام نیز هست.